Antpedia LOGO WIKI资讯

90后斯坦福博士登Science封面!AI算法准确预测RNA三维结构

半个世纪以来,确定RNA三维结构一直困惑着科学家,也成为生物学的重大挑战之一。而现在,90后斯坦福大学博士和团队通过新型AI算法——ARES准确预测出RNA三维结构,堪比AlphaFold,是生物界「海啸级」存在!我们对大部分RNA的结构几乎一无所知 半个世纪以来,确定生物分子的三维结构一直困惑着科学家,也是生物学的重大挑战之一。难就难在,RNA折叠成复杂三维结构的形状很难通过实验或计算来确定。 而现在,美国斯坦福大学通过新型AI算法准确预测出RNA三维结构,可谓意义重大! 今天,Science 封面刊登了这项研究的最新成果,由斯坦福大学在读博士生 Stephan Eismann 和 Raphael Townshend,以及计算机副教授 Ron Dror共同完成。 他们利用目前先进的神经网络技术,成功开发出了一种全新 RNA 三维结构预测模型——ARES。 从原子入手,机器学习算法预测RNA结构! RNA 分子和......阅读全文

90后斯坦福博士登Science封面!AI算法准确预测RNA三维结构

  半个世纪以来,确定RNA三维结构一直困惑着科学家,也成为生物学的重大挑战之一。而现在,90后斯坦福大学博士和团队通过新型AI算法——ARES准确预测出RNA三维结构,堪比AlphaFold,是生物界「海啸级」存在!我们对大部分RNA的结构几乎一无所知  半个世纪以来,确定生物分子的三维结构一直困

Science发现RNA全新结构,可抵抗酶降解

  美国科罗拉多大学医学院的研究人员在黄病毒(flavivirus)中发现了一种全新的RNA结构,该结构允许RNA抵抗宿主核酸外切酶的降解。这一发现可以帮助人们开发治疗药物或疫苗,对抗那些致病性的黄病毒,例如登革热病毒、西尼罗病毒、黄热病病毒和乙型脑炎病毒等等。   据介绍,世界上约有40%的人面

Science突破:实时追踪RNA

  第一次,研究人员在单分子水平上实时观测了转录过程中的RNA折叠。他们是如何做到的?他们又从中获悉了什么?   在一个隔音、温度恒定、振动控制的地下实验室,斯坦福大学的研究人员实时观察了RNA的转录,注视着RNA新生单链变长――一个核苷酸一个核苷酸 ――并折叠形成一个调控核糖体开关(regu

研究解析新冠病毒RNA聚合酶三维精细结构

  由饶子和院士/娄智勇教授/王权教授等组成的“上海科技大学-清华大学抗新冠病毒联合攻关团队”率先在国际上成功解析了新型冠状病毒转录复制机器核心单元“RdRp-nsp7-nsp8”复合体的三维空间结构,整体分辨率达到2.9 埃(Å)。  该研究揭示了该病毒遗传物质转录复制机器核心“引擎”的结构特征,

Science聚焦:球形RNA让RNA疗法重获新生

  几十年来,RNA疗法在治疗遗传疾病的道路上走得并不顺遂。不过,随着新型RNA(球形核酸SNA)在人体试验中取得成功,这一领域似乎焕发出新的活力。Science网站特别撰文介绍了这项重要突破。  RNA疗法一般是用反义RNA破坏疾病相关蛋白的生产。在美国化学学会(ACS)上周的一次会议上,研究人员

【Science特刊】RNA中的信号

  6月17日的Science出了一期关于RNA的特刊。RNA与基因表达的分子生物学紧密相关:有形成特定结构的能力;作为信号载体;对自身的调节。例如非编码小分子RNA,已知是基因表达的调控因子,和哺乳动物干细胞基因表达变化相关,而这种变化反过来和胚胎发育过程中细胞命运的决定有联系。  DNA甲基化是

Science:解析出嗜热栖热菌V/A-ATP酶的三维结构

  细胞依赖于称为ATP合酶(ATP synthase)或ATP酶(ATPase)的蛋白复合物来满足它们的能量需求。三磷酸腺苷(ATP)分子为维持生命的大部分过程提供能量。在一项新的研究中,奥地利科学技术研究所的结构生物学者Leonid Sazanov和博士后研究员Long Zhou如今解析出V/A

Science新突破:RNA折纸技术诞生

  Aarhus大学和加州理工的科学家们发明了RNA折纸技术(RNA origami),将一条RNA链编织成为多种复杂的结构。这一突破性成果发表在本周的Science杂志上。  与现有DNA折纸技术不同的是,RNA折纸需要RNA聚合酶的参与,大量RNA可以同时折叠成指定形状。另外,RNA折

Science:小RNA分子的大作用

  如果我们的神经系统发育被扰乱,我们便会有罹患上严重神经系统疾病,造成感觉系统、运动控制和认知功能受损的风险。从人类到线虫,对于所有具有发达神经系统的生物都是这种情况。   现在来自哥本哈根大学的一项新研究,揭示了线虫中一个叫做mir-79的小分子调控神经发育的机制。这一分子是发育过程中特异神经

Science发表超深度线粒体RNA测序

  蒙特利尔大学的一项新研究显示,线粒体遗传物质在个体内和个体间具有显著的多样性,而线粒体RNA上的修饰影响着我们每个人的身体健康。   线粒体基因组中的突变与多种疾病和生物学过程有关,然而此前人们还不了解线粒体转录组中的序列多样性。这项研究通过超深度线粒体RNA测序,首次为人们展示了线粒体RNA