正弦信号发生器正弦波的产生
正弦波形的产生 单向dds由nbit相位累加器和rom只读存储器(正弦查找表)构成的数控振荡源(nco),数模转换器(dac)、低通平滑滤波器(lpf)构成。 fc为时钟频率,k为频率控制字,n为相位累加器的字长,m为rom地址线位数,l为rom数据线宽度,fo为输出频率。相位累加器由全加器和累加寄存器级联组成。在时钟频率fc的控制下,对输入频率控制字k进行累加,累加满量时就产生溢出。相位累加器的输出对应于该时刻合成周期信号的相位,并且这个相位是周期性的,在0~2π范围内变化。相位累加器位数为n,最大输出为2n-1,对应于2π的相位,累加1次就输出1个相应的相位码,地址以查表方式,得到对应相位的信号幅度值,经过数模转换,就可以得到一定频率的信号输出波形,低通滤波器对输出的信号波形进行平滑处理,滤除杂波和谐波。由于控制字k经过2n/k次累加,相位累加器满量溢出,完成1个周期运算,所以输出频率fo由fc和k共同决定,即fo=......阅读全文
正弦信号发生器正弦波的产生
正弦波形的产生 单向dds由nbit相位累加器和rom只读存储器(正弦查找表)构成的数控振荡源(nco),数模转换器(dac)、低通平滑滤波器(lpf)构成。 fc为时钟频率,k为频率控制字,n为相位累加器的字长,m为rom地址线位数,l为rom数据线宽度,fo为输出频率。相位累加器由全加器
正弦信号发生器
正弦信号发生器:正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生器(输出功
RC正弦波振荡器误差产生的原因
原因:电阻,电容本身就存在误差,不是纯的;直流电源中含有交流成分;正弦震荡器存在系统误差,等等。不需要输入信号控制就能自动地将直流电转换为特定频率和振幅的正弦交变电压(电流)的电路。为提高振荡器的频率稳定度,将LC振荡器中选频网络的一部分用石英晶体替代的振荡器。采用流控型器件时,要求直流供电电源具有
为什么正弦波振荡器输出的是正弦波?
振荡器是由振荡电路组成,振荡电路是将电源的直流电能,转变成一定频率的交流信号的电路。作用是产生交流电振荡,作为信号源。 振荡电路可以是LC回路,也可以是RC回路。 一般中、高频振荡器用LC振荡电路,频率高,LC元件值比较小,体积也小,有良好的选频特性,输出波形比较纯。 在低频振荡电路中,频率低,所用
正弦信号发生器的分类
正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生器(输出功率达数十毫瓦以上
正弦信号发生器的电路
具有小畸坐的简单正弦信号发生器电路: 该电路可以满足频率范围为 300hz~15hz 而畸变系数k
正弦信号发生器的组成
正弦信号发生器主要由两部分组成:正弦波信号发生器和产生调幅、调频、键控信号。正弦波信号发生器采用直接数字频率合成dds技术,在cpld上实现正弦信号查找表和地址扫描,经d/a输出可得到正弦信号。具有频率稳定度高,频率范围宽,容易实现频率步进100 hz。全数字化结构便于集成,输出相位连续,频率、
正弦信号发生器的信号源
正弦信号源在实验室和电子工程设计中有着十分重要的作用,而传统的正弦信号源根据实际需要一般价格昂贵,低频输出时性能不好且不便于自动调节,工程实用性较差。本文的设计以较低的成本制作正弦信号发生器,可用作核磁共振中引发磁场测量仪的激励一般的正弦信号,也可作为调制用的教学演示信号源。
产生正弦波自激振荡的条件和选频特性简介
产生正弦波自激振荡的平衡条件为: 实质上,只要电路中的反馈是正反馈,相位平衡条件就一定满足,这是由电路结构决定的,而幅度平衡条件则由电路参数决定,当环路增益AF=1时,电路产生等幅振荡;AF1时,电路产生增幅振荡。所以自激振荡的起振条件为: 选频特性 在振荡电路中,当放大电路或正反馈网
验电器工频正弦波高压发生器使用操作
发生器使用如下,将电源开关拨向开的位置,过3到5秒中后,显示器显示出相应的一个低电压值,这个数值乘以电压倍率就是显示的当前高压端子输出的实际电压,在将高 压验电器报警部分的电插入高压输出端子内,使电与高压电连接(验电器绝缘杆是拉开状态)。然后顺时针调节功能旋扭,显示器显示电压数值增加,直至高压验电器
近乎完美的DDS正弦波信号音生成器(一)
简介在测试和验证分辨率高于16位的高精度快速模数转换器(ADC)的交流性能时,需要用到近乎完美的正弦波生成器,该生成器至少支持0 kHz至20 kHz音频带宽。通常会使用价格高昂的实验室仪器仪表来执行这些评估和特性表征,例如Audio Precision提供的音频分析仪AP27xx或AP
近乎完美的DDS正弦波信号音生成器(三)
NCO 64位相位累加器本身在执行时,就用到了双精度2的小数格式的SHARC 32位ALU。提供存储器更新的整个相位累加器执行过程需要11个核心周期,因此,每个NCO输出样本都在约33个核心周期内生成。图4中的框图显示了基于软件DSP的NCO的功能模块实现方案,每级都参考了运算格式精度。此外
近乎完美的DDS正弦波信号音生成器(二)
在软件中实现高精度NCO如同著名的惠普分析仪,或者如同应用笔记AN-1323中描述的那样,构建与最出色的模拟振荡器具备同等或更出色的失真性能的高精度交流信号振荡器并不容易,即使是针对音频频谱(直流至20 kHz范围)。然而,如前所述,利用嵌入式处理器具有的足够运算精度来执行相位计算(
近乎完美的DDS正弦波信号音生成器(四)
DDFS硬件演示平台:采用AD1955实现正弦波重构整套DDFS使用两个评估板实现,一个支持DSP处理器,一个适用于采用AD1955 DAC进行模拟信号重构。选择第2代SHARC ADSP-21161N评估板的原因在于其可用性、易用性,以及适合任何音频应用的精简配置。目前仍在量产的A
LC正弦波振荡器
LC正弦波振荡器、反馈型LC正弦波振荡器是LC正弦波振荡器的主要电路型式。LC选频网络既是放大器的负载,又有一部分是正反馈网络。根据反馈电路的形式不同,可分为变压器耦合反馈式、电感分压反馈式和电容分压反馈式。图1中(a)和(b)分别示出电感分压反馈式和电容分压反馈式的电路。这种电路中电感分压器和
RC正弦波振荡器
RC正弦波振荡器,RC正弦波振荡器的振荡频率反比于RC选频阿络元件RC的乘积。用增大电阻阻值的方法降低振荡频率,不会像LC振荡器中增大电感量那样会使元件体积和重量加大,故RC振荡器可工作在低频段。应用最广泛的RC振荡电路是文氏电桥电路。R1、C1、R2、C2组成具有选频特性的正反馈网络。R3和R
正弦波振荡器的应用
应用正弦波振荡器广泛用于各种电子设备中。此类应用中,对振荡器提出的要求是振荡频率和振荡振幅的准确性和稳定性。正弦波振荡器的另一类用途是作为高频加热设备和医用电疗仪器中的正弦交变能源。这类应用中,对振荡器提出的要求主要是高效率地产生足够大的正弦交变功率,而对振荡频率的准确性和稳定性的要求一般不作苛求。
常见的正弦波振荡器
电容反馈振荡器 反馈网络是由电容元件完成的,称为电容反馈振荡器,也称为考必兹(Colpitts)振荡器。其特点是输出波形较好、输出频率较高,但振荡频率调节不方便。 电感反馈振荡器 反馈网络是由电感元件完成的,称为电感反馈振荡器,也称为哈特莱(Hartley)振荡器。其特点是振荡频率调节比较
正弦波振荡的起振条件
T(jω)>1,为正弦波振荡的起振条件。振荡器的起振条件又可细分为起振的振幅条件(|T(jω)|>1)和相位条件(ψ(T)=ψ(K)+ψ(F)+ψ(F')=±2nπ, n=0,1,2…),其中起振的相位条件即为正反馈条件。为使振荡过程中输出幅度不断增加,应使反馈回来的信号比输入到放大器的信号
正弦波通过电容的细节
零到四分之一周期时 电压从0到峰值,电压对电容进行正充电四分之一到二分之一 电压从峰值到0,电压对电容进行正放电二分之一到四分之三 电压从零到负峰值,电压对电容反向充电四分之三到1 电压从负峰值到0,电压对电容反向放电周而复始。
正弦波振荡器相关概述
正弦波振荡器是指不需要输入信号控制就能自动地将直流电转换为特定频率和振幅的正弦交变电压(电流)的电路。 定义 它由四部分组成:放大电路,选频网络,反馈网络和稳幅电路。常用的正弦波振荡器有电容反馈振荡器和电感反馈振荡器两种。后者输出功率小,频率较低;而前者可以输出大功率,频率也较高。 分类
正弦波振荡器LC设计
晶体管选择 从稳频的角度出发,应选择fT较高的晶体管,这样晶体管内部相移较小。通常选择fT >(3~10)f1max。同时希望电流放大系数β大些,这既容易振荡,也便于减小晶体管和回路之间的耦合 直流馈电线路的选择 为保证振荡器起振的振幅条件,起始工作点应设置在线性放大区;从稳频出发,稳定状
正弦波振荡器的反馈型
反馈型原理分析反馈型振荡器是由放大器和反馈网络组成的一个闭合环路。它由放大器和反馈网络两大部分组成。放大器通常以某种选频网络(如振荡回路)作负载, 是一种调谐放大器;反馈网络一般是由无源器件组成的线性网络。起振------>非线性过程------>稳幅振荡平衡条件记 闭环电压放大倍数Ku(s),开环
正弦波振荡器的常见LC
常见LC电容反馈振荡器反馈网络是由电容元件完成的,称为电容反馈振荡器,也称为考必兹(Colpitts)振荡器。其特点是输出波形较好、输出频率较高,但振荡频率调节不方便。电感反馈振荡器反馈网络是由电感元件完成的,称为电感反馈振荡器,也称为哈特莱(Hartley)振荡器。其特点是振荡频率调节比较方便,但
正弦波振荡的起振条件包括
T(jω)>1,为正弦波振荡的起振条件。振荡器的起振条件又可细分为起振的振幅条件(|T(jω)|>1)和相位条件(ψ(T)=ψ(K)+ψ(F)+ψ(F')=±2nπ, n=0,1,2…),其中起振的相位条件即为正反馈条件。为使振荡过程中输出幅度不断增加,应使反馈回来的信号比输入到放大器的信号
正弦波振荡器定义及分类
正弦波振荡器是指不需要输入信号控制就能自动地将直流电转换为特定频率和振幅的正弦交变电压(电流)的电路。中文名 正弦波振荡器 外文名 sine-wave oscillator 组 成 放大电路,选频网络,反馈网络等 定义它由四部分组成:放大电路,选频网络,反馈网络和稳幅电路。常用的正弦波振荡器有
正弦波振荡器的应用相关介绍
正弦波振荡器广泛用于各种电子设备中。此类应用中,对振荡器提出的要求是振荡频率和振荡振幅的准确性和稳定性。正弦波振荡器的另一类用途是作为高频加热设备和医用电疗仪器中的正弦交变能源。这类应用中,对振荡器提出的要求主要是高效率地产生足够大的正弦交变功率,而对振荡频率的准确性和稳定性的要求一般不作苛求。
负阻型LC正弦波振荡器
负阻型LC正弦波振荡器:由具有负微变电阻的器件和LC选频网络构成的正弦波振荡器。根据所采用的负阻器件的特性不同,电路的构成有所不同。采用流控型器件时,要求直流供电电源具有较高的内阻,器件应和LC元件组成串联振荡回路;采用压控型器件时,要求直流供电电源有较低的内阻,器件应和LC元件组成并联振荡回路
正弦波振动式粘度计产品特点
1. 实时对温度及粘度测量对样品进行实时粘度测量的同时的测量样品的温度,能获得样品的粘度和温度变化之间的相互关系。2. 高精度测量全新研发的SV方法(音叉型)确保粘度测量有重复精度高达1%。3. 宽范围测量从低至0.3mPa.s(1000mPa.s)到高到10,000mPa.s(100,000mPa
正弦波振动式粘度计工作原理
工作原理传感器碟片与驱动电磁力以相同频率形成共振。它的整个结构的特性都是为了要得到一个共振测定系统而设计。共振的应用是这个粘度计最显着的特征。当检测单元振动的时候,它会通过弹簧盘产生的相当大的反作用力在支持传感器碟片的支撑单元上。然而,每个传感器碟片都是以固定频率及振幅彼此反向驱动,其目的是为抵消反