脉冲放电检测器的结构

PDHID、PDECD是l992年Wentworth等在HID的基础上提出引入的,以后又逐步作了改进,近两年已正式成为商品仪器, PDHID和PDECD的结构基本一样。 检侧池主体是一个长95mm内径14mm的中空不锈钢圆筒。分隔成放电区和反应区,放电区(1)是在一块20mm长3mm内径的石英圆筒块〔7)上装有两个放电电极〔3),放电电极的末端是ф0.25-0.5mm的铂金尖端,两个电极间距约1.6mm ,脉冲放电周期是300μs,脉冲宽度是20-40μs,放电电压20V,产生20mA放电电流,放电互径是0.1-0.15mm.在反应区(2)有两个偏压电极(4.5;150V,2V)和一个收集电极(6),它们之间用四块长8mm,内径3mm的蓝宝石绝缘(8),用黄金O型圈压紧密封,He(30mL/min)从检测池顶部(9)引进放电区,色谱柱(11)从检测池底部插人,柱出口在收集电极(6)和偏压电极(5)之间,PDECD的掺杂气亦......阅读全文

脉冲放电检测器的结构

  PDHID、PDECD是l992年Wentworth等在HID的基础上提出引入的,以后又逐步作了改进,近两年已正式成为商品仪器, PDHID和PDECD的结构基本一样。  检侧池主体是一个长95mm内径14mm的中空不锈钢圆筒。分隔成放电区和反应区,放电区(1)是在一块20mm长3mm内径的石英

什么是脉冲放电检测器?

  脉冲放电检测器(pulsed discharge detector)是一种氦光离子化检侧器,当用纯氮作载气和放电气体时,它具通用型检测器功能,像氦离子化检测器(HID)一样,既能灵敏检测无机气体。如H2、O2、CO、CO2、H2O等。又能灵敏检测有机化合物.如烃、含杂原子(氧、硫、卤素)化合物、

局部放电检测仪的脉冲法原理

局部放电检测仪在电力应用上能对高压电气设备进行局放带电巡检,便于工作人员及时对高压电气设备的运行状态进行评估,为设备的维修提供了依据,也可为运行设备的故障点进行跟踪测试,大大提高高压电气设备运行的可靠性、安全性和有效性。  依据局部放电产生的各种物理、化学现象,有很多种测量局部放电的方法。电力行业使

电火花加工使用的脉冲放电频率是多少

电火花加工的频率大概可以这样计算的,脉宽5~200us,占空比2~10,因此周期是50us~2000us,频率就是20KHz到500Hz,现有固态继电器是很难达到这样的频率的,即使讲究到达500Hz左右的频率,固态继电器的开断次数一般在10万次左右,大概只能使用200s就失效了。所以电火花电源是不能

贫铀表面的Ar气脉冲辉光放电清洗

由于贫铀特有的化学性质,其表面在大气中始终存在一层影响界面结合的氧化层。为了增强薄膜与铀基体之间的有效结合,需要采用先进的辉光放电技术对铀基体进行薄膜沉积前的原位清洗。铀样品经金相砂纸逐级打磨并抛光,将样品放入俄歇电子能谱仪(AES)预制室,充入Ar气进行辉光放电清洗,清洗后用俄歇电子能谱仪对表面进

局部放电检测器概述

  局部放电检测器(Partial discharge detector)体积小、重量轻、使之成为名符其实的携带式仪器。该仪器是根据IEC(270)标准,利用脉冲电流法原理研制而成,并满足GB-7354-87、GB-1207-97、GB-1208-97中关于局部放电测试对测试仪器规定的技术要求。该仪

局部放电检测器的技术参数

  1.可测试品的电容范围:6pF~250uF  2.检测灵敏度及允许电流(见表1)。  3.椭圆扫描时基  (1) 频率:50、100、150、200、400Hz  (2) 旋转:以30度为一档,可旋转120度。  (3) 工作方式:标准-扩展-直线。  (4) 高频时基椭圆的输入电压范围:13~

局部放电检测器的通用试验方法

  (一)试验目的  (1) 证实试品在规定电压下没有高于规定值之局部放电;  (2) 测定电压上升时出现放电超过某一规定值时的最低电压(起始放电电压)和电压下降时放电低于规定值时最高电压(终止放电电压)。  (3) 测定在某一规定电压下的放电强度。  (二)试验条件  (1) 交流电源电压应为正弦

关于局部放电检测器的名词、术语解释

  1. 局部放电  局部放电是指在绝缘的局部位置放电,它并不构成整个绝缘的贯通性击穿。它包含三种放电形式:内部放电(在介质内部)、沿面放电(在介质表面)、电晕放电(在电极尖端)。  2. 电荷量  在试品两端瞬时注入一定电荷量,使试品端电压的变化和由局部放电本身引起的端电压的变化相同,此注入量即为

数字式局部放电检测仪的脉冲电流法原理

当外加电压在电气设备中发作的场强,足以使绝缘部分区域发作放电,但在放电区域内未形成固定放电通道的这种放电现象,称为局部放电。局部放电测试仪有 数字式局部放电检测仪运用的原理是脉冲电流法:脉冲电流法即发作一次部分放电时,试品Cx两头发作一个瞬时电压改变Δu,此刻若经过电Ck耦合到一检测阻抗Zd上,回路

脉冲高度分析器的电路整体结构

  脉冲高度分析器采集系统结构。一般将晶体与光电倍增管、前置放大器一起称为探头。脉冲信号放大电路做成一个独立的单元,东北师范大学辐射技术研究所是将探头高压电源、信号放大电路及四路电源放在一个机箱中。甄别电路、控制电路、A/D转换电路是设计多道卡必不可少的电路。脉冲高度分析器主要包括峰值保持与采集、数

用局部放电检测器试验时的注意事项

  1. 在试验开始加压以前,试验人员必须详细而全面地检查一遍线路,以免线路接错。测试仪器处的接地线是否与接地体牢固连接,若连接不牢或在准备工作时掐头去尾线被脚踢断,这将可能引起人身和设备事故。  2.对于连接线应避免将尖端暴露在外,防止尖端电晕放电,尤其对于电压等级较高的局部放电试验,必要时要加粗

用于电脉冲发生器的支承管道结构

  用于包括多个发生器级的Marx脉冲 电压发生器的成一体的管道支承结构被公开。人们已知安装与开关放电器、脉冲电容器和串并联电阻器的支承框架分离的,用于冲洗开关放电器的空气的管道。按照本发明,管道对开关放电器和脉冲电路的个别或所有的电气部件有支承功能。在一个实施例中管道由三角形筒状的支承结构构成,其

火焰光度检测器的结构

  FPD由氢焰部分和光度部分构成。氢焰部分包括火焰喷嘴、遮光罩、点火器等。光度部分包括石英片、滤光片和光电倍增管。

脉冲放电等离子体技术驱动重油转化方面最新进展

 近日,中国科学院电工研究所极端电磁环境科学技术研究部邵涛研究团队联合中石化石油化工科学研究院有限公司等,在利用脉冲放电等离子体技术驱动重油转化方面获新进展。  全球石油资源重质化趋势不断加剧,如何高效、清洁地利用重油资源已成为炼油工业亟需解决的问题。等离子体技术无需催化剂和高温高压反应条件,具有原

优青徐国盛成功模拟长脉冲高约束放电中边界局域计算

  近日,等离子体所徐国盛研究员课题组在研究EAST装置长脉冲高约束模式放电条件下的边界局域模线性不稳定性方面取得进展,相关内容以Stability analysis of ELMs in long-pulse discharges with ELITE code on EAST tokamak为题

智能蓄电池放电测试仪的结构特点

   可并接多台小巧的恒流扩展模块,满足更大放电电流的需要,主机可控制恒流模块同时启动和同时停止。   功耗部分采用航空合金电热元件,电热转换效率高,安全系数高,体积小、重量轻;   放电电流自动计算功能,内置各小时率放电系数,用户可根据被测电池的标称容量和所需要的放电小时率来自动计算需要设置的放电

热导池检测器的结构

  热导池是由不锈钢块或铜块作为池体,在池体上钻有大小相同、形状完全对称的孔道,即池槽。每个池槽中固定一根长短、粗细、电阻值都完全相同的金属丝,例如钨丝、铂丝或铼钨丝,这些金属丝均为热敏元件。  池体上有两个池槽、两根热敏元件的热导池称为双臂热导池;池体上有4个池槽、4根热敏元件的热导池称为四臂热导

热导池检测器的结构

  热导池是由不锈钢块或铜块作为池体,在池体上钻有大小相同、形状完全对称的孔道,即池槽。每个池槽中固定一根长短、粗细、电阻值都完全相同的金属丝,例如钨丝、铂丝或铼钨丝,这些金属丝均为热敏元件。  池体上有两个池槽、两根热敏元件的热导池称为双臂热导池;池体上有4个池槽、4根热敏元件的热导池称为四臂热导

气相色谱法的发展简史

  气相色谱法的发展与两个方面的发展是密不可分,一是气相色谱分离技术的发展,二是其他学科和技术的发展。  1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离,用滴定溶液体积对时间做图,得到积分色谱图。之后,他们

关于气相色谱的发展介绍

  GC色谱的发展与下面两个方面的发展是密不可分的。一是气相色谱分离技术的发展,二是其他学科和技术的发展。  1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离。用滴定溶液体积对时间做图,得到积分色谱图。以后,

气相色谱法的发展简史

  气相色谱法的发展与两个方面的发展是密不可分,一是气相色谱分离技术的发展,二是其他学科和技术的发展。  1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离,用滴定溶液体积对时间做图,得到积分色谱图。之后,他们

气相色谱技术的前世今生(二)

气相色谱(简称GC 英文全称 gas chromatography )气相色谱的诞生和发展1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离。用滴定溶液体积对时间做图,得到积分色谱图。以后,他们又发明了气体密度

气相色谱法的发展历史简介

  气相色谱法的发展与两个方面的发展是密不可分,一是气相色谱分离技术的发展,二是其他学科和技术的发展。  1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离,用滴定溶液体积对时间做图,得到积分色谱图。之后,他们

气相色谱法的发展简史

  气相色谱法的发展与两个方面的发展是密不可分,一是气相色谱分离技术的发展,二是其他学科和技术的发展。  1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离,用滴定溶液体积对时间做图,得到积分色谱图。之后,他们

锂电池放电要注意的是放电速率与放电深度

  放电深度是放电量与标称容量的比值,实用中最好的参照指标是电压,锂电池如何放电才能使放电深度较为科学?一般的标准是:一个锂电池放电到2.75V和3V之间就可以给电池充电了,因为低于2.75V就容易产生充电电池忌讳的“过放”,过放时,从内部结构来说,一是会造成电解液过度挥发,二是锂电池的负极过度反应

简述气相色谱发展历程

  气相色谱(gas chromatography 简称GC)是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。  气相色谱的发展与下面两个方面的发展是密不可分的。一是气相色谱分离技术的

HL1装置硬X射线能谱及长脉冲放电与硬X射线的发射关系

在HL-1装置上初步测硬(?)射线能谱,能量达5MeV。实验观测到长脉冲放电与硬(?)射线的关系,并得到逃逸电子的径向扩散。 

HL1装置硬X射线能谱及长脉冲放电与硬X射线的发射关系

在HL-1装置上初步测硬(?)射线能谱,能量达5MeV。实验观测到长脉冲放电与硬(?)射线的关系,并得到逃逸电子的径向扩散。 

HL1装置硬X射线能谱及长脉冲放电与硬X射线的发射关系

在HL-1装置上初步测硬(?)射线能谱,能量达5MeV。实验观测到长脉冲放电与硬(?)射线的关系,并得到逃逸电子的径向扩散。