光谱分析的概念
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成分是分子的则称为分子光谱。......阅读全文
光谱分析的概念
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成
光谱分析的概念
光谱分析属于光学分析(optical analysis)。光学分析法是依据物质的电磁辐射或电磁的倍射与物质相互作用后发生的变化来测定物质的性质、含量和结构的一类分析方法,广义上为光学法,分为光谱分析法和非光谱分析法两大类。
光谱分析法的概念
光谱分析法是基于物质内能状态改变而发生电磁辐射的发射或吸收与物质组成及其构之间的关系,以对光谱的波长和强度测量为基础的分析方法,相关的分析方法有原子光语法、分子光谱法以及X射线荧光光谱法等。
光谱分析法的概念
利用光谱学的原理和实验方法以确定物质的结构和化学成分的分析方法称为光谱分析法。 英文为spectral analysis或spectrum analysis。各种结构的物质都具有自己的特征光谱,光谱分析法就是利用特征光谱研究物质结构或测定化学成分的方法。
非光谱分析法的概念
非光谱分析法是基于物质所引起的辐射方向和物理性质的改变而进行的分析,不包含物质内能的变化,即不涉及能级跃迁,这类变化有反射、散射、折射、色散、干涉、偏振和射等,相关的分析方法有比浊法、折光分析、旋光分析、圆二向色性法以及X射线衍射法等这些方法在本手册中将不作专章讨论,部分内容在有关章节中有所涉及。
光谱分析法的概念及分类
概念 利用光谱学的原理和实验方法以确定物质的结构和化学成分的分析方法称为光谱分析法。 英文为spectral analysis或spectrum analysis。各种结构的物质都具有自己的特征光谱,光谱分析法就是利用特征光谱研究物质结构或测定化学成分的方法。 分类 光谱分析法主要有原子
光谱分析的概念和技术方法介绍
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成
光谱分析法的概念和分类
根据与电磁辐射作用的物质是以气态原子还是以分子(或离子团)形式存在,可将光谱法分为原子光谱法和分子光谱法两类。原子光谱法是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。
光谱分析的概念什么时候产生的
1802年,有一位英国物理学家沃拉斯顿为了验证光的色散理论重做了牛顿的实验。这一次,他在三棱镜前加上了狭缝,使阳光先通过狭缝再经棱镜分解,他发现太阳光不仅被分解为牛顿所观测到的那种连续光谱,而且其中还有一些暗线。可惜的是他的报告没引起人们注意,知道的人很少。1814年,德国光学家夫琅和费制成了第一台
原子吸收光谱分析法背景吸收的概念
背景吸收是原子化器中的气态分子对光的吸收或高浓度盐的固体微粒对光的散射而引起的。
原子吸收光谱分析基本原理共振激发的概念
原子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。这些荧光谱线中波长最长的一个称为共振线 处在基态的原子吸收某些具有特定频率的入射光称为共振线(resonance line)。电子从基态跃迁至第一激发态时,要吸收一定频率的光,所产生的吸收谱线称为
实验室分析仪器光谱分析中的等离子体概念
在物理学中,等离子体状态是指物质已全部离解为电子及原子核的状态,而光谱分析中的等离子体概念则不是十分严格,光谱分析中的等离子体仅在一定程度上被电离(电离度在0.1%以上),是包含分子、原子、离子、电子等各种粒子的集合体。原子光谱分析中的等离子体通常采用气体放电的方法获得,作为原子和离子发射光谱的激发
光谱分析
主要包括火焰和电热原子吸收光谱AAS, 电感耦合等离子体原子发射光谱ICP-OES, X-射线荧光光谱XFS和X-射线衍射光谱分析法XRD;(1) 原子吸收光谱(Atomic Absorption Spectrometry, AAS) 又称原子吸收分光光度分析。原子吸收光谱分析是基于试样蒸气相中被测
光谱分析的历史
1802年,有一位英国物理学家沃拉斯顿为了验证光的色散理论重做了牛顿的实验。这一次,他在三棱镜前加上了狭缝,使阳光先通过狭缝再经棱镜分解,他发现太阳光不仅被分解为牛顿所观测到的那种连续光谱,而且其中还有一些暗线。可惜的是他的报告没引起人们注意,知道的人很少。1814年,德国光学家夫琅和费制成了第一台
光谱分析的原理
发射光谱分析是根据被测原子或分子在激发状态下发射的特征光谱的强度计算其含量。吸收光谱是根据待测元素的特征光谱,通过样品蒸汽中待测元素的基态原子吸收被测元素的光谱后被减弱的强度计算其含量。它符合郎珀-比尔定律:A= -lg I/I o= -lgT = KCL式中I为透射光强度,I0为发射光强度,T为透
光谱分析的特点
①操作简便,分析速度较快。不少光谱分析无须对样品进行处理可直接分析,如XRF可直接分析固体、液体样品。原子发射光谱可同时对多种元素分析,省去复杂的分离操作等。②不需纯标准样品即可实现定性分析。原子发射光谱、红外光谱等只需利用已知谱图,即可进行定性分析。这是光谱分析一个十分突出的优点。③选择性好,可测
光谱分析2—光谱分析法简介
什么是光谱分析?光谱分析的意义? 1858-1859年,德国化学家本生和物理学家基尔霍夫著名物理学家进行合作,建立起了第一台把光谱分析作为主要目的的分光镜,宣告了光谱分析方法的诞生,奠定了一种新的化学分析方法—光谱分析法的基础,初步上解决了对于化学物质进行细微的微观认识并且进行精确研究的这一难
光谱分析的技术特点
由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10^-10(10的负10次方)克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.
光谱分析的研究方向
根据研究光谱方法的不同,习惯上把光谱学区分为发射光谱学、吸收光谱学与散射光谱学。这些不同种类的光谱学,从不同方面提供物质微观结构知识及不同的化学分析方法。发射光谱可以区分为三种不同类别的光谱:线状光谱、带状光谱和连续光谱。线状光谱主要产生于原子,带状光谱主要产生于分子,连续光谱则主要产生于白炽的固体
光谱分析的科学原理
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成
玫瑰精油的光谱分析
玫瑰精油因其售价昂贵、制备费时,且需要消耗大量原料,因此制备过程中常常被掺入各种廉价的物质以次充好。本文将报道如何采用一种新的光谱分析方法来检测被污染的玫瑰精油。 从大马士革玫瑰和百叶蔷薇的叶子中提炼得到的玫瑰精油产品属于当今最为昂贵的香精原料。玫瑰精油以及玫瑰提取物的分析鉴定通常采用GC
光谱分析的定性原理
通过光谱的研究,人们可以得到原子、分子等的能级结构、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的信息。与此同时,光谱学方法应用在获取物质组成方面的信息,为化学分析提供了多种重要的定性与定量的分析方法。光谱分析一般可依据物质与光的相互作用产生的光谱的特征来定,不同光谱特征有很
光谱分析的定量原理
用光谱不仅能定性分析物质的化学成分,而且能确定元素含量的多少。光谱分定量原理一般是依据光的强度与待测分析物质含量有确定的函数关系。由于某种特定光谱光是由某特定物质产生的,一般该物质含量越大,相应的光谱光的强度也越大,在目前大多数光谱仪器中,通常是控制仪器在一定的条件下,通过建立特辱定光谱光的强度与待
光谱分析科普
由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10^-10(10的负10次方)克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.
光谱分析定义
由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成。这种方法叫做光谱分析。做光谱分析时,可以利用发射光谱,也可以利用吸收光谱,光谱类测试(主要包括红外光谱,核磁共振波谱,X射线衍射仪,紫外可见分光光度计,拉曼光谱仪) 采用物质对不同波长区域光谱的吸收情况,对化合物的官能
材料光谱分析
主要包括火焰和电热原子吸收光谱AAS, 电感耦合等离子体原子发射光谱ICP-OES, X-射线荧光光谱XFS和X-射线衍射光谱分析法XRD;(1) 原子吸收光谱(Atomic Absorption Spectrometry, AAS) 又称原子吸收分光光度分析。原子吸收光谱分析是基于试样蒸气相中被测
光谱分析分类
原理 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪。经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器。经典光谱仪器都是狭缝光谱仪器。调制光谱仪是非空间分光的,它采用圆孔进光。 根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光
光谱分析仪简介及发射光谱分析的过程
光谱分析仪根据现代光谱仪器的工作原理,光谱分析仪可以分为两大类:经典光谱仪和新型光谱仪。 经典光谱仪器是建立在空间色散原理上的仪器:新型光谱仪器是建立在调制原理上的仪器。 经典光谱仪器都是狭缝光谱仪器。调制光谱仪是非空间分光的,它采用圆孔进光根据色散组件的分光原理,光谱仪器可分
红外光谱分析的用途
红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于
定量光谱分析的相关介绍
20世纪初,逐步实现了定量光谱分析。1890年,胡特和德利菲德的研究成果表明,照相底片的黑度与产生映像的曝光量的对数在一定范围内成直线关系,这就是后来的乳剂特性曲线。这一发现为“摄谱法光谱定量分析”准备了条件。德国人格拉赫在1924年经施伐策尔改进了该方法:如果在几年试样中,基体元素的量是恒定的