荧光光谱是什么
原子荧光光谱(AFS):典型原子荧光检测过程是以氢化物/冷蒸气发生方式实现样品的导入,氩氢扩散火焰原子化器实现被测元素的原子化,自由原子被空心阴极灯激发后发射的原子荧光,以无色散光路被 光 电 倍 增 管 接 收,获 得 原 子 荧 光 信 号。理 论 上,AFS兼具AES和AAS的优点,同时也克服了两者的不足,但是,由于AFS存在散射光干扰及荧光猝 灭 严 重 等 固 有 缺陷,使得该方法对激发光源和原子化器有较高的要求。......阅读全文
荧光光谱是什么
原子荧光光谱(AFS):典型原子荧光检测过程是以氢化物/冷蒸气发生方式实现样品的导入,氩氢扩散火焰原子化器实现被测元素的原子化,自由原子被空心阴极灯激发后发射的原子荧光,以无色散光路被 光 电 倍 增 管 接 收,获 得 原 子 荧 光 信 号。理 论 上,AFS兼具AES和AAS的优点,同时也克服
荧光测试中激发光谱,荧光光谱分别是什么作用
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱.荧光发射光谱的形状与激发光的波长无关 .荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于
荧光测试中激发光谱,荧光光谱分别是什么作用
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱.荧光发射光谱的形状与激发光的波长无关 .荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于
荧光测试中激发光谱,荧光光谱分别是什么作用
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱.荧光发射光谱的形状与激发光的波长无关.荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
荧光光谱
荧光光谱:荧光光谱包括激发谱和发射谱两种。激发谱是荧光物质在不同波长的激发光作用下测得的某一波长处的荧光强度的变化情况,也就是不同波长的激发光的相对效率;发射谱则是某一固定波长的激发光作用下荧光强度在不同波长处的分布情况,也就是荧光中不同波长的光成分的相对强度。 既然然激发谱是表示某种荧光物质在不同
X射线荧光光谱和荧光光谱-区别
一、理论上。荧光光谱是比较宽的概念,包括了X射线荧光光谱。二、从仪器分析上,荧光光谱分析可以分为:X射线荧光光谱分析、原子荧光光谱分析,1)X射线荧光光谱分析——发射源是Rh靶X光管2)原子荧光光谱分析——可用连续光源或锐线光源。常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、
光谱是什么
复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案
光谱是什么
光谱(spectrum) :是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。光谱中最大的一部分可见光谱是电磁波谱中人眼可见的一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人类大脑视觉所能区别的所有颜色,譬如褐色和粉红色
什么是荧光激发光谱、荧光发射光谱
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关 。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于
荧光光谱的原子荧光光谱的分类
原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反
什么是荧光激发光谱、荧光发射光谱
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关 。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于
学术干货│荧光光谱入门(一):荧光光谱基础
1.什么是荧光? 物体经过较短波长的光照,把能量储存起来,然后缓慢发出较长波长的光,发出的这种光就叫荧光。物质在吸收入射光的过程中,光子能量传递给物质分子。分子被激发,电子从较低能级跃迁到较高能级,形成电子激发态分子。电子的激发态的多重态用2s+1表示,s为自旋角动量量子数的代数和,数值为0或
红外光谱是什么光谱
红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到
红外光谱是什么光谱
红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到
红外光谱是什么光谱
红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到
红外光谱是什么光谱
红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到
红外光谱是什么光谱
红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到
红外光谱是什么光谱
红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到
红外光谱是什么光谱
红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到
红外光谱是什么光谱
红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到
荧光光谱技术
16世纪,西班牙科学家Nicholas Monardes观察到,贮放在由菲律宾紫檀木制成的杯中的水会发出一种神奇而迷人的蓝光。到17世纪,Boyle等其他科学家也观察并记载了类似的发光现象。1864年,英国物理学家George Stokes首先提出发光现象作为一种分析方法,他在1852年发表的关于发
荧光光谱技术
1. 瞬态光谱测试寿命的时候,如何避免误差,得到真实的实验结果,选择狭缝和激发功率有什么经验和技巧?另外测固体和液体寿命时候如何保持氮气氛围?HORIBA荧光寿命测试软件会在寿命测试结果中自动给出S.Dev,3倍的S.Dev是寿命结果的误差;在测试过程中保持a<2%,减少堆积效应带来的测试结果偏短的
荧光谱测量
某些物质受到电磁辐射而激发时,它们能重新发射出相同或较长波长的光。这种现象称为光致发光,荧光是光致发光现象中最常见的类型。如果停止照射,则荧光很快(
荧光激发光谱和荧光发射光谱的区别
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
荧光激发光谱和荧光发射光谱的区别
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
荧光激发光谱和荧光发射光谱的区别
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
荧光激发光谱和荧光发射光谱的区别
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
荧光激发光谱和荧光发射光谱的区别
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...
FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧
荧光光谱上出现两个吸收峰是什么原因
看是否元素的掺杂对其荧光产生影响。原因可能是:1元素的掺入2 形成了新的物质建议减小狭缝宽度或者稀释再测下。