激光气体分析仪的调制光谱检测技术简介
调制光谱检测技术 调制光谱检测技术是一种被最广泛应用的可以获得较高检测灵敏度的TDLAS技术。它通过快速调制激光频率使其扫过被测气体吸收谱线的定频率范围,然后采用相敏检测技术测量被气体吸收后透射谱线中的谐波分量来分析气体的吸收情况。 调制类方案有外调制和内调制两种,外调制方案通过在半导体激光器外使用电光调制器等来实现激光频率的调制,内调制方案则通过直接改变半导体激光器的注入工作电流来实现激光频率的调制。由于使用的方便性,内调制方案得到更为广泛的应用,下面简单描述其测量原理。 在激光频率扫描过气体吸收谱线的同时,以一较高频率正弦调制激光工作电流来调制激光频率,瞬时激光频率可表示为式中,(t)表示激光频率的低频扫描;a是正弦调制产生的频率变化幅度;w为正弦调制频率。透射光强可以被表达为下述Fourier级数的形式。 谐波分量可以使用相敏探测器(PSD)来检测。调制光谱技术通过高频调制来显著降低激光光器噪声(1/f噪声)对......阅读全文
激光气体分析仪的调制光谱检测技术简介
调制光谱检测技术 调制光谱检测技术是一种被最广泛应用的可以获得较高检测灵敏度的TDLAS技术。它通过快速调制激光频率使其扫过被测气体吸收谱线的定频率范围,然后采用相敏检测技术测量被气体吸收后透射谱线中的谐波分量来分析气体的吸收情况。 调制类方案有外调制和内调制两种,外调制方案通过在半导体激光
内调制技术简介
在激光形成过程中,以调制信号的规律去改变激光振荡的某一参数,即用调制信号控制着激光的形成,叫做内调制。内调制直接输入激光器驱动电路调制信号以控制其输出。区别于外调制,外调制中激光器不受控制,只对输出后的激光进行调制。内调制是信号对光源本身直接调制,以调制信号改变激光器的振荡参数,通过偏置电流的变化或
声光调制技术简介
声光调制是一种外调制技术,通常把控制激光束强度变化的器件称作调制器。调制信号是以电信号(调幅)形式作用于换能器上,再转化为以电信号形式变化的波场,当光波通过介质时,使光载波受到调制而成为“携带”信息的强度调制波。
拉曼激光气体分析仪简介
拉曼激光气体分析仪RLGA的核心部分是一个激光检测装置,其中的氦氖激光器可以发射一种安全的低功率单波激光到一个气体测试腔内。由于激光能量微弱,装置内部通过检测腔两端的反射镜不断进行反射,将能量放大1000倍左右。 光子与气体分子发生碰撞后发生散射,产生一种不同于激光频谱的光谱,而且不同分子散射
激光气体分析仪的简介和原理
TDLAS技术本质上是一种光谱吸收技术,通过分析激光被气体的选择性吸收来获得气体的浓度。它与传统红外光谱吸收技术的不同之处在于,半导体激光光谱宽度远小于气体吸收谱线的展宽。 原理 1.朗伯-比尔定律 因此,TDLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯
激光气体分析仪的技术优势
现场在线测量 激光光谱分析高精度测量 定量光谱分析恶劣环境适应力强 光学非接触检测高速响应、测量无扰动 无须采样预处理/预处理简单可靠性高
激光气体分析仪的优点和缺点简介
1、能现场在线检测几乎所有工业过程气体(可测气体超过100种) 2、样气采用抽取式,进入分析腔后,一台分析仪可同时测量8种气体,适合复杂混合气体测量 3、所有测量值均为直接测量所得,不需要导算 4、检测间隔为50毫秒,响应时间可低至1秒 5、任何气体的检测量程都不受限制,同一部分析仪可测
激光拉曼光谱气体分析仪器专项启动
1月18日,国家重大科学仪器设备开发专项“激光拉曼光谱气体分析仪项目的研发与应用”在武汉正式启动,省科技厅副巡视员方国强及东湖高新区科技创新局、项目承担单位、合作单位、项目监理组相关领导和专家出席启动会。 方国强副巡视员指出,国家重大科学仪器设备开发专项是科技部财政部在科学仪器研
激光气体分析仪
1.调制光谱检测技术 调制光谱检测技术是一种被最广泛应用的可以获得较高检测灵敏度的TDLAS技术。它通过快速调制激光频率使其扫过被测气体吸收谱线的定频率范围,然后采用相敏检测技术测量被气体吸收后透射谱线中的谐波分量来分析气体的吸收情况。 调制类方案有外调制和内调制两种,外调制方案通过在半导体
激光气体分析仪的技术特点和优势
技术特点和优势 (1)不受背景气体的影响 (2)不受粉尘与视窗污染的影响 (3)自动修正温度,压力对测量的影响 激光气体在线分析仪用来进行连续工业过程和气体排放测量,适合于恶劣工业环境应用,如钢铁各种燃炉、铝业和有色金属、化工、石化、水泥、发电和垃圾焚烧等。 特征 高分辨率(激光扫描
气体激光器的简介
这是一类以气体为工作物质的激光器。此处所说的气体可以是纯气体,也可以是混合气体;可以是原子气体,也可以是分子气体;还可以是离子气体、金属蒸气等。多数采用高压放电方式泵浦。最常见的有氦-氖激光器、氩离子激光器、二氧化碳激光器、氦-镉激光器和铜蒸气激光器等。
激光超声检测技术电学检测法简介
根据是否与被测样品之间接触,电学检测法可以分成接触式以及非接触式两种类型。 接触式主要利用压电换能器( PAT),利用压电晶体、压电陶瓷以及压电薄膜等材料把超声信号转化成为电信号,为了能够显著提升能量传递效率,换能器会和样品之间通过耦合剂的形式耦合。这种方法在十九世纪末期随着压电材料的兴起而形
激光超声检测技术光学检测法简介
光学检测法包含了非干涉法以及干涉法。非干涉法中使用到的检测技术包含了光反射技术、光偏转技术以及光衍射技术。干涉法则包含了外差干涉仪以及共焦F—P干涉仪。 2.1 干涉法 干涉法测量主要是借助声波在金属表面传播或者是到达金属表面的时候声波会产生位移,从而导致光束频率以及相位调制实现的。 干涉
激光气体分析仪的DLAS激光原理
激光吸收光谱技术的简称。DLAS技术本质上是一种光谱吸收技术,通过分析激光被气体的选择性吸收来获得气体的浓度。 它与传统红外光谱吸收技术的不同之处在于,半导体激光光谱宽度远小于气体吸收谱线的展宽。因此,DLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔
原位激光过程气体分析仪GasTDL3100的简介
原位激光过程气体分析仪GasTDL-3100是基于可调谐半导体激光吸收光谱技术(TDLAS)的高性能光学分析仪器,采用对射式设计,可用于工业过程气体控制;其响应时间快速,在原位式测量中一般以秒计算,避免采样式测量带来的时间延迟,可在线及时的反应被测气体浓度。
激光共聚焦显微拉曼光谱技术简介
拉曼信号是一种由入射光引起的分子的非弹性散射信号,拉曼光谱技术无需样品准备和制备过程,简单,可重复且能够进行无损伤定性定量分析。水的拉曼散射微弱,拉曼光谱也因此成为研究水溶液中的生物样品和化学化合物的理想工具。激光共聚焦显微拉曼光谱技术是一种激光为基础的分析技术,将拉曼光谱分析技术与显微分析技术
激光在线气体分析仪不只是想象的那么简单
激光在线气体分析仪是基于可调谐半导体激光吸收光谱(TDLAS)原理的,在烟囱、管道或类似的现场进行原位气体在线监测的仪器。其技术是通过改变半导体激光器的工作电流或者工作温度等参数改变激光输出波长,扫描被测气体得到某一条或者一组气体吸收谱线的吸收光谱,常用的吸收光谱技术包括:直接吸收光谱、波长调制
激光在线气体分析仪不只是想象的那么简单
激光在线气体分析仪是基于可调谐半导体激光吸收光谱(TDLAS)原理的,在烟囱、管道或类似的现场进行原位气体在线监测的仪器。其技术是通过改变半导体激光器的工作电流或者工作温度等参数改变激光输出波长,扫描被测气体得到某一条或者一组气体吸收谱线的吸收光谱,常用的吸收光谱技术包括:直接吸收光谱、波长调制
激光光谱技术十年布局,助推高端气体分析仪国产化提速
在第一台激光器诞生60多年后的今天, 随着激光光源、探测技术、实验装置和数据处理等各方面技术的飞跃发展, 激光光谱技术作为微观感知领域的核心技术, 已经成为物理、化学、生物、环境以及天文学等领域中研究光与物质相互作用的重要手段, 从实验室基础研究到各领域应用第一线都扮演着无可替代的角色。 拉曼
激光气体分析仪的特点
具有以下几点特点: 1、直接安装 2、无防爆问题 3、光纤分布,分体式连接 4、真正的多点同时监测 5、极宽的检测范围,从PPB到%的浓度范围都可以分析 6、无气体交叉干扰,超强的抗干扰能力 7、无需用户后期标定 8、快速的响应时间。
激光气体分析仪的原理
1.朗伯-比尔定律 因此,TDLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lambert-Beer)定律表述式中,IV,0和IV 分别表示频率V的激光入射时和经过压力P,浓度X和光程L的气体后的光强;S(T)表示气体吸收谱线的强度;线性函数g(v-v
激光气体分析仪的原理
激光气体分析仪是一种光谱吸收技术,通过分析激光被气体的选择性吸收来获得气体的浓度。它与传统红外光谱吸收技术的不同之处在于,半导体激光光谱宽度远小于气体吸收谱线的展宽,被广泛用于多个领域中。 激光气体分析仪具有直接安装、无防爆问题、光纤分布、分体式连接、多点同时监测、检测范围广泛、超强的抗干
激光气体分析仪的原理
1.朗伯-比尔定律因此,TDLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lambert-Beer)定律表述式中,IV,0和IV 分别表示频率V的激光入射时和经过压力P,浓度X和光程L的气体后的光强;S(T)表示气体吸收谱线的强度;线性函数g(v-v0)表征
气体分析仪的简介
气体分析仪是测量气体成分的流程分析仪表。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。 气体分析仪是测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。由于被分析气体的千差万别和分析原
激光技术简介
激光技术(英文:laser technology),是采用激光的手段,对特定目标进行加工或者检测的技术 。被认为是人类在智能化社会生存和发展的必不可少的工具之一。在国家重点研发计划“增材制造与激光制造”重点专项拟立项的2018年度项目公示清单中,不乏像高效精密激光增材制造-电解加工整体制造技术和飞
实验室检验检测设备激光气体分析仪
TDLAS技术本质上是一种光谱吸收技术,通过分析激光被气体的选择性吸收来获得气体的浓度。它与传统红外光谱吸收技术的不同之处在于,半导体激光光谱宽度远小于气体吸收谱线的展宽。1.朗伯-比尔定律因此,TDLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lamber
激光粉尘检测仪的技术特点简介
主要技术特点 (1)设计了可更换的粒子切割器,实现了PM10、PM5、 PM2. 5 、 TSP多种粒子分离切割器 兼容。 (2)设计了在线滤膜采样器,实现了连续监测粉尘浓度与滤 膜采样兼容,可以分析所收集到颗 粒物的成份以及求出该场所的质量浓度转换系数K值。 (3)采用激光光源,质量浓度转
气体分析仪简介
气体分析仪是测量气体成分的流程分析仪表。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。
光调制技术的调制方法介绍
光调制的方法主要分为直接调制、腔内调制和腔外调制三种。直接调制法外加信号直接控制激光器的泵浦源(如控制半导体激光器的注入电流),从而使激光的某些参量得到调制。腔内调制法腔内调制是通过改变激光器的参数(如增益、谐振腔Q值或光程等)而实现的,主要用于Q开关、腔测空、锁模等技术。腔内调制又分为被动式与主动
气体激光器的技术优点
与固体、液体比较,气体的光学均匀性好,因此,气体激光器的输出光束具有较好的方向性、单色性和较高的频率稳定性。而气体的密度小,不易得到高的激发粒子浓度,因此,气体激光器输出的能量密度一般比固体激光器小。气体激光器结构简单、造价低,操作方便,工作介质均匀,光束质量好以及能长时间较稳定地连续工作。是品种最