Antpedia LOGO WIKI资讯

三元MAX相中实现二维铁磁材料的构筑

近日,中国科学院宁波材料技术与工程研究所以Near-Room-Temperature Ferromagnetic Behavior of Single-Atom-Thick 2D Iron in Nanolaminated Ternary MAX Phases为题在Applied Physics Reviews上在线发表最新研究成果。美国物理学会网站上也以Trio of ternary MAX phases expand possibilities for 2D ferromagnetic materials fabrication为题对该工作做亮点介绍。 Mn+1AXn(MAX)相是一类具有六方晶体结构(P63 mm/c)的三元层状碳化物,其中M为前过渡族金属,A一般认为是ⅢA和ⅣA族元素,X为碳或/和氮,n=1-3。Mn+1AXn晶体结构由Mn+1Xn纳米结构亚层与A位单原子层交替堆垛而成,相邻两层Mn+1Xn单元呈孪......阅读全文

三元MAX相中实现二维铁磁材料的构筑

  近日,中国科学院宁波材料技术与工程研究所以Near-Room-Temperature Ferromagnetic Behavior of Single-Atom-Thick 2D Iron in Nanolaminated Ternary MAX Phases为题在Applied Physics

铁磁谐振的相关简介

  铁磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用引起的持续性、高幅值谐振过电压现象。虽然铁磁谐振在国内外已有很多研究成果,在电网运行中也采取了许多消谐措施,但小电流接地系统的铁磁谐振事故却依然频繁发生。当调控员误将铁磁谐振当成接地或断线故障进行排查而延迟事故处

铁磁谐振的现状简介

  随着国家电网公司对调度自动化基础数据综合整治工作的深入进行,调控中心所汇集的电网运行监控信息的准确性、可靠性、实时性、全面性得到大幅提高,这为调控员快速识别、分析、处理各类电网异常、故障、事故提供了更广的视角。通过实践证明:利用越限报警、保护装置告警、消弧线圈动作信息、故障母线及其相邻母线的三

铁磁谐振的鉴别技术

    调控员平时应关注重合成功后故障线路三相不平衡情况和小电流接地系统中各条母线,及时消除断线故障和调整严重三相不均衡的线路。当越限报警信号发生时,调控员应该进行如下操作。  1)观察相应主变中性点上的消弧线圈动作信息和该母线上所有间隔保护装置的异常报警信号,用1s时间来辨别事故的真伪,若发生单相

铁磁谐振的相似特征简介

  相似特征  铁磁谐振和单相接地、断线故障都会使经消弧线圈接地的主变压器中性点电压发生严重偏移;在调度端都会出现中性点零序电压越限报警信号,如66kVⅡ段母线接地或谐振、66kVⅡ段母线越限等;故障母线三相电压出现明显不平衡,如其中有两相电压升高、一相电压降低;多间隔的保护装置发出告警信号,如78

铁磁谐振的主要特点

  1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而趋于平稳;  2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。如电源电压暂时升高、系统受到较强烈的电流冲击等;  3、铁磁谐振存在自保持现象。激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;  4、铁

三元里电池跟磷酸铁锂区别

  1.正极材料不同,三元锂电池的正极材料是镍钴锰酸锂或镍钴铝酸锂,而磷酸铁锂电池的正极材料则是磷酸铁锂;  2.在低温状态下的性能表现不同;  3.续航能力不同,三元锂电池续航能力更好一些;  4.熔点不同,磷酸铁锂电池熔点更高一些。

我国揭示石墨烯/铁磁金属界面拓扑磁结构Rashba效应诱导

  磁斯格明子,一种受拓扑保护的磁涡旋结构(如图1),因其可以做到纳米尺寸、非易失且易驱动从而非常适合应用在信息存储、逻辑运算或者神经网络技术等领域,是近些年来自旋电子学研究的热点。然而要实现磁斯格明子在自旋电子学器件上的应用还要解决诸如其室温下的稳定性、可控读写、高密度以及与当前磁存储结构兼容等诸

铁磁形状记忆合金或可实现工程应用

  哈尔滨工业大学材料学院副教授张学习与美国西北大学合作开展的具有大磁感生应变性能的泡沫镍锰镓合金的制备过程与组织性能研究,首次在泡沫材料中发现大的磁感生应变。《自然—材料学》杂志近期刊登了这一研究成果并给予高度评价。   镍锰镓合金具有磁感生应变特性最早发现于1996年,2

三元电池与磷酸铁锂电解液溶剂配比

  按照电解液中溶剂占比 85%,三元电池 DMC:EMC:EC:DEC:PC=15:35:35:10:5;其他电池 DMC:EMC:EC:DEC:PC=35:15:35:10:5。  2025 年全球电池级溶剂需求约187.1万吨,据此测算中国电池级溶剂需求量约 80.5 万吨,未来 5 年增速3