原子吸收光谱的背景是怎么产生的

原吸收光谱扣除背景通三类: 连续光源校背景 空阴极灯自吸效应校 背景塞曼效应校背景 (1)连续光源校背景 待测元素波紫外波段(180-400nm)采用氘灯或氘空阴 极灯波见光及近红外波段采用钨或碘钨灯现代 AAS 仪器应用较广泛种 校背景其原理用待测元素 HCL 辐射作品光束测量总吸收信号用连续 光光源辐射作参比光束并视纯背景吸收 光辐射交替通原化器 两所测吸收值相 减使背景校种产背景校足或度两种光源光强度要匹配 光斑要重合致近使用氘空阴极灯克服类足处 (2)自吸(收)效应校背景称 S-H 校背景 其原理低电流脉冲供电(峰值电 流 60mA)于 HCL 使其发射锐线光谱 并测原吸收背景吸收总吸收值 短高电 流 脉冲供电(峰值电流约 600mA )于 HCL 使其发射谱线产自吸(收)效应原蒸气吸 收其测吸收值视背景吸收值两值相减背景校吸收值种简单 本低能校某些结构背景与原谱线重叠干扰进行全波段 190-900nm 背景......阅读全文

原子吸收光谱的背景是怎么产生的

  原吸收光谱扣除背景通三类: 连续光源校背景 空阴极灯自吸效应校 背景塞曼效应校背景  (1)连续光源校背景  待测元素波紫外波段(180-400nm)采用氘灯或氘空阴 极灯波见光及近红外波段采用钨或碘钨灯现代 AAS 仪器应用较广泛种 校背景其原理用待测元素 HCL 辐射作品光束测量总吸收信号用

原子吸收光谱的背景是怎么产生的

原子吸收光谱是包含各种波长的复合光投射到原子上后得到的光谱,只有原子的特征谱线位置的光被吸收因而出现暗线,未被吸收的光仍然存在,形成明亮背景.

原子吸收光谱的背景是怎么产生的

  原吸收光谱扣除背景通三类: 连续光源校背景 空阴极灯自吸效应校 背景塞曼效应校背景  (1)连续光源校背景  待测元素波紫外波段(180-400nm)采用氘灯或氘空阴 极灯波见光及近红外波段采用钨或碘钨灯现代 AAS 仪器应用较广泛种 校背景其原理用待测元素 HCL 辐射作品光束测量总吸收信号用

原子吸收光谱的背景是怎么产生的

  原吸收光谱扣除背景通三类: 连续光源校背景 空阴极灯自吸效应校 背景塞曼效应校背景  (1)连续光源校背景  待测元素波紫外波段(180-400nm)采用氘灯或氘空阴 极灯波见光及近红外波段采用钨或碘钨灯现代 AAS 仪器应用较广泛种 校背景其原理用待测元素 HCL 辐射作品光束测量总吸收信号用

原子吸收光谱法中的背景干扰是怎么产生的

原子吸收光谱分析中的背景干扰主要是指原子化过程中产生的分子吸收和固体微粒产生的光散射产生的干扰效应。背景干扰往往使吸光度增大,产生正误差。 光谱背景干扰的抑制和校正 a.光谱背景干扰的抑制 在实际工作中,多采用改变火焰类型、燃助比和调节火焰观测区高度来抑制分子吸收干扰;在石墨炉原子吸收光谱分析中

原子吸收光谱法中的背景干扰是怎么产生的

原子吸收光谱分析中的背景干扰主要是指原子化过程中产生的分子吸收和固体微粒产生的光散射产生的干扰效应。背景干扰往往使吸光度增大,产生正误差。光谱背景干扰的抑制和校正a.光谱背景干扰的抑制 在实际工作中,多采用改变火焰类型、燃助比和调节火焰观测区高度来抑制分子吸收干扰;在石墨炉原子吸收光谱分析中,常选用

原子吸收光谱法中的背景干扰是怎么产生的

原子吸收光谱分析中的背景干扰主要是原子化过程中产生的分子吸收和固体微粒产生的光散射产生的干扰效应。背景干扰往往使吸光度增大,产生正误差。原子吸收光谱(Atomic Absorption Spectroscopy,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子

原子吸收光谱是如何产生的

原子吸收光谱位于光谱的紫外区和可见光区。原子吸收光谱为原子发射光谱的逆过程,即自由态原子吸收其特征波长的光后,基态原子的外层电子被激发跃迁至高能态。因此,原子吸收光谱的谱线同样取决于元素的原子结构,每一种元素都有其特征的原子吸收光谱线。电子从基态激发到最低激发态,称为共振激发,完成这种激发所需的能量

原子吸收光谱是如何产生的

原子吸收光谱位于光谱的紫外区和可见光区。原子吸收光谱为原子发射光谱的逆过程,即自由态原子吸收其特征波长的光后,基态原子的外层电子被激发跃迁至高能态。因此,原子吸收光谱的谱线同样取决于元素的原子结构,每一种元素都有其特征的原子吸收光谱线。电子从基态激发到最低激发态,称为共振激发,完成这种激发所需的能量

原子吸收光谱是如何产生的

原子吸收光谱位于光谱的紫外区和可见光区。原子吸收光谱为原子发射光谱的逆过程,即自由态原子吸收其特征波长的光后,基态原子的外层电子被激发跃迁至高能态。因此,原子吸收光谱的谱线同样取决于元素的原子结构,每一种元素都有其特征的原子吸收光谱线。电子从基态激发到最低激发态,称为共振激发,完成这种激发所需的能量

原子吸收光谱是如何产生的

原子吸收光谱位于光谱的紫外区和可见光区。原子吸收光谱为原子发射光谱的逆过程,即自由态原子吸收其特征波长的光后,基态原子的外层电子被激发跃迁至高能态。因此,原子吸收光谱的谱线同样取决于元素的原子结构,每一种元素都有其特征的原子吸收光谱线。电子从基态激发到最低激发态,称为共振激发,完成这种激发所需的能量

原子吸收法中背景吸收是怎样产生的

原子化过程中产生的分子吸收;固体颗粒对光的散色。背景校正,连续光源校正,自习校正……

原子发射光谱是怎么产生的

原子发射光谱的产生原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出现,即得到发射光谱(线光谱)。

原子吸收光谱测定水中钙离子含量背景吸收产生原因

在使用锐线光源条件下,基态原子蒸汽对共振线的吸收,符合朗伯-比尔定律,即:A=lg(I0/I)=KLN0。在试样原子化时,火焰温度低于3000 K时,对大多数元素来讲,原子蒸汽中基态原子的数目实际上十分接近原子总数。在一定实验条件下,待测元素的原子总数目与该元素在试样中的浓度呈正比。则:A=kc。用

原子发射,原子吸收和原子荧光光谱是怎么产生的

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优

原子发射光谱,原子吸收光谱和原子荧光光谱怎么产生的

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优

原子吸收光谱产生的原理

原理:当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。区别:吸收光谱 入射辐射的频率等于原子中的电子由基态跃迁到较高能态所需要

原子吸收光谱产生的因素

原子吸收光谱产生的因素是:__基态原子吸收特征辐射后跃迁到激发态所产生的_。

原子吸收光谱产生的因素

原子吸收光谱产生的因素是:__基态原子吸收特征辐射后跃迁到激发态所产生的_。

原子吸收分光光度计的背景是怎么

背景是指一种光谱线的干扰,又称背景吸收(分子吸收)是来自原子化器的一种光谱干扰。它是一种宽频吸收。

原子荧光怎么产生的

气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约10-8s,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子荧光。原子荧光分为共振荧光、直跃荧光、阶跃荧光等。

氢气是怎么产生的

氢气氢气(Hydrogen)你知道世界上最轻的气体是什么气体吗?它就是氢气,它的密度非常小,只有空气的1/14。所以用氢气充灌的气球,必须用手牢牢捉住。否则,只要一撒手它就会闪闪升上天空。氢气是一种很轻的气体氢气有个爱“钻空子”的脾气。灌好的氢气球,往往过一夜,第二天就飞不起来了。这是因为氢气能钻过

简述原子吸收光谱产生的原理

原理: 当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。 区别: 吸收光谱 入射辐射的频率等于原子中的电子由基态跃迁

吸收光谱是怎样产生的

大多数是内能形式吸收光谱。另外是光合作用形式吸收光谱,比如植物。还有化学反应吸收光谱,比如太阳电池等。

吸收光谱是怎样产生的

大多数是内能形式吸收光谱。另外是光合作用形式吸收光谱,比如植物。还有化学反应吸收光谱,比如太阳电池等。

火焰原子吸收光谱法的研究背景

背景主要涉及样品前处理和基体改进剂背景吸收主要来源于分子,检测器能分辨原子化了的元素,但如果在该吸收波长附近有未原子化的分子存在,这些吸收就会对元素信号产生干扰,所以选择和控制好你的灰化和原子化温度,有利于消除这些干扰。也可以通过加入基改提高灰化和原子化温度,使得这些分子不在该波长该温度下存在,以降

怎么看原子吸收光谱仪是什么扣背景方式呢?

扣背景方式一般3种: 氘灯,在与空心阴极灯呈90度角方向上有一氘灯,氘灯到空心阴极灯光路上有一半透半反射镜 塞曼方式:在原子化器外部包着磁铁,后面光路有罗匈棱镜(得拆开) 自吸收方式:特制空心阴极灯,好像日立使用

原子吸收光谱线的多普勒变宽是由于哪些原因产生的

多普勒变宽。       多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的原子发出的光,如果运动方向离开观测者,则在观测者看来,其频率较静止原子所发的光的频率低;反之,如原子向着观测者运动,则其频率较静止原子发出的光的频率为高,这就是多普勒效应。             原子

原子吸收光谱的氘灯扣背景和自吸收扣背景的区别

原子吸收扣背景的3种常见方法:自吸收扣背景、氘灯扣背景和塞曼效应扣背景自吸收扣背景法缺点:1、可能会校正过度 2、灯损耗大,影响灯的寿命。氘灯扣背景法缺点:1、只能校正紫外区的背景信号,不能校正可见区的背景信号;2、空心阴极灯和氘灯的光斑很难重合,导致校正误差;3、有临近谱线的干扰时,可能会校正过度

原子吸收光谱产生的因素是什么?

吸收光谱:物质吸收光子,从低能级跃迁到高能级而产生的光谱。