Antpedia LOGO WIKI资讯

什么是磁矩

电子磁矩电子是发现较早的一种基本粒子,存在于原子核外。各种化学元素便是根据该元素原子的原子核中的质子数目,也就是该元素原子在非电离的正常状态下的原子核外的电子数目决定的。原子中的电子磁性有由电子的自旋产生的自旋磁矩和电子环绕原子核作轨道运动产生的轨道磁矩。对于不处于原子中的自由电子说来,就只有自旋磁矩,是电子具有的内禀磁性,常简称电子磁矩。一般电子学只考虑运动电子的电荷所产生的电流,但是在上个世纪(20世纪)末,由于现代磁学和高新技术的发展,诞生了磁学与电子学交叉的称为磁电子学、又称自旋电子学的新的交叉磁学或称边缘磁学。这样在磁电子学中电子电流和电子磁矩(自旋)都得到研究和应用。电子磁矩研究的一项很重要又很有意义的成果是对电子磁矩的精密测量和理论计算。这表现在20世纪中期的30年研究中,对应用于电子磁矩与电子角动量关系的电子g因数的反常因数(简称g反常因数) α的精密测量和理论计算上。按早期的理论研究,g因素g=2,即g反常因数......阅读全文

基于自旋轨道力矩效应全电学操控磁矩翻转和信息写入

  如何利用全电学方法实现磁性薄膜的确定性磁矩翻转,一直是研发自旋电子学器件的挑战性难题之一。随着研究的不断深入,实现磁矩确定性翻转的方式发生了阶跃性的变化,极大地推动了自旋电子学核心器件——磁随机存储器(MRAM)更新换代式的递进发展。磁随机存储器是最具大规模产业化前景的新一代非易失性存储器之一,

基于自旋轨道力矩效应全电学操控磁矩翻转和信息写入

  如何利用全电学方法实现磁性薄膜的确定性磁矩翻转,一直是研发自旋电子学器件的挑战性难题之一。随着研究的不断深入,实现磁矩确定性翻转的方式发生了阶跃性的变化,极大地推动了自旋电子学核心器件——磁随机存储器(MRAM)更新换代式的递进发展。磁随机存储器是最具大规模产业化前景的新一代非易失性存储器之一,

磁铁的磁性究竟来源于哪里?(二)

图4、斯特恩与盖拉赫和他们的实验原理,上方中间图即为盖拉赫寄给玻尔的明信片事实并没有那么简单!这根物理学实验中的“雪茄”毕竟和玻尔等人预言不严格一致。索末菲的一个天才学生——泡利敏锐地注意到了这个问题,他综合考虑了原子轨道模型与许多实验结果的不一致[4]。大胆设想,或许有些看似是电子和原子核相互作用

磁铁的磁性究竟来源于哪里?(三)

磁铁的磁性随着温度究竟会发生什么变化?早在量子力学大厦落成之前,两位名叫皮埃尔的法国物理学家就对此问题进行了定量的实验研究,一个叫皮埃尔?外斯,另一个叫皮埃尔·居里。没错,就是他,帅帅的居里夫人老公—— 居里本尊!1885—1889 年间,皮埃尔•居里还是巴黎市立理化学校的一名普通教师,为了

核磁共振的原理

核磁共振,全称“核磁共振成像(MRI)”。是一种医学影像诊断技术,亦称“核磁共振成像术”。利用人体组织中某种原子核的核磁共振现象,将所得射频信号经过电子计算机处理,重建出人体某一层面的图像,并据此作出诊断。  1924年W.泡利为了解释原子光谱的某些结构,提出原子核具有角动量(即自旋)的假说。194

全电学操控的非易失性多功能可编程自旋逻辑研究

  基于自旋的数据存储和运算技术是解决大数据时代计算能力不足和存储空间不够的优选方案之一。而磁随机存储器和自旋逻辑器件分别是自旋电子学可以明确针对存储和逻辑运算两方面挑战难题而提出的对应关键技术。它们两者共同的物理和器件基础是:(1)高磁电阻比值的磁性隧道结材料和(2)电流驱动的磁矩翻转机理。后者还

磁性样品

  看到了 才相信  安得物理论虚实  眼见为真定认知  只是江山多乱序  此峰难断彼峰斯  冠状病毒我们肉眼看不到,故而感觉其无处不在,引得风声鹤唳、更是伤亡惨重。湖北的抗疫我们也亲眼看不到,但借助平面图文却能够“感受”到,虽然感受与亲眼看到有区别。因此,去感受、去看到、然后去行动,是我们的脚步和

轨道角动量与轨道磁矩的关系是什么

sp轨道这里分为两种情况,第一sp轨道是最外层的价电子轨道,如3d金属的4s,4p轨道,他们的 磁矩不予考虑主要是上述轨道在具体结构中由于化学键的作用,能级位置一般在Fermi面以上,基本没有被填充,或者占据很少,对于体系磁矩贡献很小,其次上述轨道在空间扩展范围很大,晶胞之间重叠程度比3d轨道要大很

电子顺磁共振基本原理——EPR (ESR)和NMR的比较

电子顺磁EPR (ESR)是研究电子磁矩在外磁场中的电子塞曼分裂及与电磁场相互作用引起的能级间的共振跃迁。NMR是研究核磁矩在外磁场中的核塞曼分裂及与电磁场相互作用引起的能级间的共振跃迁。电子顺磁EPR (ESR)的共振频率在微波波段,如0.34T(9.5GHz) , 1.25T(35GHz)。NM

核磁共振波谱法等实验方法介绍

(一)原子核的自旋与原子核的磁矩核磁共振(Nuclear Magnetic Resonance NMR)波谱学是近几十年发展的一门新学科。1945年以F.Block和E.M.Purcell为首的两个研究小组分别观测到水、石蜡中质子的核磁共振信号,为此他们荣获1952年Nobe1物理奖。今天,核磁共振

振动样品磁强计(VSM)基本原理全解析

01 什么是VSM?振动样品磁强计(Vibrating Sample Magnetometer, 简称:VSM)是测量材料磁性的重要手段之一,广泛应用于各种铁磁、亚铁磁、反铁磁、顺磁和抗磁材料的磁特性研究中,它包括对稀土永磁材料、铁氧体材料、非晶和准晶材料、超导材料、合金、化合物及生物蛋白质的磁性研

核磁共振波谱法基本原理(一)

(一)原子核的磁性质原子核是带正电的粒子,实验证明大多数原子核在做自旋运动,因而具有一定的自旋角动量,用P表示,角动量是一个矢量,其方向服从右手螺旋定则。核由自旋产生的角动量不是任意数值,而是由自旋量子数决定的。根据量子力学理论,原子核的总角动量P的值为式中,h为普朗克常量;h为角动量的单位,h=h

带你了解小动物核磁共振成像仪

  小动物核磁共振成像仪具有1.0T的永磁体,较好的磁场均匀性,搭载纽迈高性能梯度系统,提供更高的图像分辨率,为科研提供更多的研究方向和思路。   小动物核磁共振成像仪的基本原理:   核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的运动。根据量子力学原理,原子核与电子一样

再精确10倍!质子磁矩测量创新纪录

    科技日报北京11月27日电 (记者房琳琳)《科学》杂志日前发表的一项重要研究表明,高精确度测量的单个质子磁矩达到了小数点后十位——表征磁矩的g因子等于2.79284734462,精确度是2014年测量结果的十倍,创造了有史以来最精确的测量记录。质子与反质子磁矩示意图 图片来自网络  质子是原

钙钛矿结构RCrO3体系磁性及磁电效应研究取得进展

  近日,中国科学院合肥物质科学研究院固体物理研究所功能材料研究室尹利华等研究人员在钙钛矿结构Cr基氧化物的磁性及磁电效应等方面的研究获得新进展,相关结果发表在Applied Physics Letters等期刊上。  磁性是物质的基本属性,磁性物质在信息存储、磁制冷等现代科学技术和生产生活中广泛应

新实验未见“暗光子”的“芳踪”这并非表明暗光子不存在

  美国布鲁克海文国家实验室的科学家对“开创性高能核反应交互实验(PHENIX)”的最新数据进行了分析,结果并未发现“暗光子”的踪迹。他们表示,最新研究并非表明暗光子不存在,只是意味着暗光子不太可能是导致“μ介子的G-2反常磁矩”出现的“罪魁祸首”。  “暗光子”的“行为举止”与普通光子类似,会同任

期待已久的μ介子实验结果即将揭晓

原文地址:http://news.sciencenet.cn/htmlnews/2021/3/455345.shtm 费米实验室μ介子g-2实验的存储环磁铁 图片来源:Reidar Hahn/Fermilab 经过20年的等待,重新启动的μ介子实验即将公布结果。他们计划于4

简述核磁分析原理

  核磁分析是指核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy, NMR )NMR是研究原子核对射频辐射(Radio-frequency Radiation)的吸收,它是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分

固体所在钙钛矿结构RCrO3体系磁性及磁电效应方面获进展

  近期,固体所功能材料研究室尹利华等研究人员在钙钛矿结构Cr基氧化物的磁性及磁电效应等方面的研究获得新进展,相关结果相继发表在Applied Physics Letters (Appl. Phys. Lett. 111, 072402 (2017); Appl. Phys. Lett. 110,

高鸿钧团队在二维原子晶体VTe2的近藤效应研究中获进展

  近藤效应来源于非磁金属中微量的磁性杂质散射。由于非磁性主体的传导电子与磁性杂质的局域磁矩相互作用,电阻率在低温下出现极小值。磁性杂质对电阻的贡献与温度成对数关系:Δρ = –clnT,其中T是温度,c是取决于主体金属及磁性杂质的种类和浓度的参数。当温度低于特征温度——近藤温度TK时,磁性杂质的自

再精确10倍!质子磁矩测量创新纪录 验证CPT物理学定律

  《科学》杂志日前发表的一项重要研究表明,高精确度测量的单个质子磁矩达到了小数点后十位——表征磁矩的g因子等于2.79284734462,精确度是2014年测量结果的十倍,创造了有史以来最精确的测量记录。  质子是原子核中带正电的粒子,单个质子的磁矩不可思议地小,但仍可以量化,质子的基本属性对于理

迄今最精确测量结果显示缪子行为异常

原文地址:http://news.sciencenet.cn/htmlnews/2021/4/455740.shtm 在美国费米实验室进行的缪子反常磁矩实验显示,缪子的行为与标准模型理论预测不相符!记者8日从上海交通大学缪子物理团队带头人李亮教授处获悉,他们参与的美国费米实验室缪子反常磁矩实验(

再精确10倍!质子磁矩测量创新纪录

  《科学》杂志日前发表的一项重要研究表明,高精确度测量的单个质子磁矩达到了小数点后十位——表征磁矩的g因子等于2.79284734462,精确度是2014年测量结果的十倍,创造了有史以来最精确的测量记录。  质子是原子核中带正电的粒子,单个质子的磁矩不可思议地小,但仍可以量化,质子的基本属性对于理

核磁共振成像性能原理

  从宏观上看,作进动的磁矩集合中,相位是随机的。它们的合成取向就形成宏观磁化,以磁矩M表示。就是这个宏观磁矩在接收线圈中产生核磁共振信号。在大量氢核中,约有一半略多一点处于低等状态。可以证明,处于两种基本能量状态核子之间存在动态平衡,平衡状态由磁场和温度决定。当从较低能量状态向较高能量状态跃迁的核

美国费米实验室计划重测μ介子磁矩

  据英国《自然》杂志11日报道,美国费米实验室表示,他们将于下月重测μ介子的磁矩,此研究有可能揭示未知的虚粒子,从而开辟超越标准模型的新物理学。  μ介子带负电,质量为电子的200多倍。量子理论认为,宇宙中的能量于短暂时间内在固定的总数值左右起伏,从这种能量起伏产生的粒子就是虚粒子。“短命”的虚粒

物理所铁基超导体统一相图研究取得进展

  自2008年被发现以来,已有至少20种不同结构铁砷化物或铁硒化物被证实存在超导电性,它们统称为铁基超导体。由于铁基超导体同样可以突破BCS强耦合理论预言的40K的麦克米兰极限,它和铜氧化物超导体一起被列入高温超导家族,其超导微观机理问题至今仍是凝聚态物理前沿领域皇冠上的明珠。  经过多年研究,人

Nature子刊新文章突破电子显微镜的原有限制

  材料学院朱静、于荣、钟虓䶮研究团队实现原子面分辨测量材料轨道与自旋磁矩  清华大学,德国于利希研究中心等处的研究人员发表了题为“Atomic scale imaging of magnetic circular dichroism by achromatic electron microscop

电子顺磁共振波谱仪原理解析

电子顺磁共振波谱仪EPR 的基本概念是物质的顺磁性是由分子的永久磁矩产生的。根据保里原理:每个分子轨道上不能存在 2 个自旋态相同的电子,因而各个轨道上已成对的电子自旋运动产生的磁矩是相互抵消的,只有存在未成对电子的物质才具有永久磁矩,它在外磁场中呈现顺磁性。电子自旋产生自旋磁矩: μ = geβ,

核磁共振现象

  (一)核有磁性  1.核由质子和中子组成  2.质子带正电,中子不带电  3.所以,原子核带正电的  4.另外,有些核具有内秉角动量(自旋)  5.奇数核子  6.奇数原子序数,偶数核子  因而核有磁性  磁矩 描述磁场强度与方向的矢量  自旋角动量  旋磁比,每个核都有一特定的值。有正有负,核

中子衍射的特点之三

中子的磁矩和原子磁矩(即电子和原子核的自旋磁矩和轨道磁矩的总和)有相互作用,其散射振幅随原子磁矩的大小和取向而变化。