拉曼光谱仪的工作原理

当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^~10^,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因此称该散射光为拉曼散射。在拉曼散射中,散射光频率相对入射光频率减少的,称之为斯托克斯散射,因此相反的情况,频率增加的散射,称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常大多测定的是斯托克斯散射,也统称为拉曼散射。 散射光与入射光之间的频率差v称为拉曼位移,拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的(电子云发生变化)。拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,ΔE反映了指定能级的变化......阅读全文

拉曼光谱仪的基本原理

一、基本原理当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变方向发生散射,而光的频率仍与激发光的频率相同,这种散射称为瑞利散射;约占总散射光强度的 10-6~10-10的散射,不仅改变了光的传播方向,而且散射光的频率也改变了,不同于激发光的频率,称为拉曼散射。拉曼散

简介激光显微共焦拉曼光谱仪的拉曼基本原理

  当光打到样品上时,样品分子会使入射光发生散射,若部分散射光的频率发生改变,则散射光与入射光之间的频率差称为拉曼位移。拉曼光谱仪主要就是通过拉曼位移来确定物质的分子结构,针对固体、液体、气体、有机物、高分子等样品均可以进行定性定量分析。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波  紫外

紫外拉曼与共振拉曼原理

  荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波

显微拉曼光谱仪与便携拉曼光谱仪的优势区别

 高利通科技显微拉曼光谱仪与便携拉曼光谱仪并无太大的区别,非要说不同,那就是显微拉曼光谱仪是便携拉曼光谱仪基础上多一个显微镜,可实现探测更加精密的物质。    显微拉曼光谱仪的优势:    1、灵活的采样方式:      2、高精度探测镜:      3、高品质、高灵敏探测器:    CCD探测器使

拉曼光谱仪原理入门及优点

拉曼光谱仪原理入门及优点拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差和化合物振动频率、转动频率的关系的分析方法。 与红外光谱类似,拉曼光谱是一种振动光谱技术。所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐。拉曼光谱仪

拉曼光谱仪技术指标及原理

  技术指标  光学参数  光谱扫描范围: 186~5000cm-1  输出功率: 0~50mW  瑞利线阻止: OD>8,最小可探测波数186cm-1  数值孔径: 0.42  工作距离: 20mm  单色仪: F/#=8  光栅: 1800l/mm  线分辨率: 1.6nm/mm  探测器  探

激光显微共焦拉曼光谱仪的拉曼效应

  光散射是自然界常见的现象。晴朗的天空之所以呈蓝色、早晚东西方的空中之所以出现红色霞光等,都是由于光发生散射而形成了不同的景观。拉曼光谱是一种散射光谱。在实验室中,我们通过一个很简单的实验就能观察到拉曼效应。在一暗室内,以一束绿光照射透明液体,例如戊烷,绿光看起来就像悬浮在液体上。若通过对绿光或蓝

激光拉曼和傅里叶变换拉曼光谱仪的比较

拉曼光谱仪按照激发光源与分光系统的不同可分为两大类:色散型拉曼光谱仪 (简称激光拉曼) 和傅里叶变换拉曼光谱仪 (简称傅变拉曼)。前者采用短波的可见光激光器激发、光栅分光系统,近年向着更短的紫外激光器发展;后者则采用长波的近红外激光器激发、迈克尔逊干涉仪调制分光等技术。激光拉曼和傅变拉曼由于在仪器的

拉曼光谱仪定义

  拉曼光谱仪主要适用于科研院所、高等院校物理和化学实验室、生物及医学领域等光学方面,研究物质成分的判定与确认;还可以应用于刑侦及珠宝行业进行毒品的检测及宝石的鉴定。该仪器以其结构简单、操作简便、测量快速高效准确,以低波数测量能力著称;采用共焦光路设计以获得更高分辨率,可对样品表面进行um级的微区检

拉曼光谱仪知识

  拉曼(Sir Chandrasekhara Venkata Raman, 1888(戊子年)-1970)。印度物理学家,又译喇曼。因光散射方面的研究工作和拉曼效应的发现,获得了1930年度的诺贝尔物理学奖。1921 年,印度物理学家拉曼(C. V. Raman)从英国搭船回国,在途中他思考着为什

激光拉曼光谱仪

激光拉曼光谱仪是一个集合了激光光谱学、精密机械和微电子系统的综合测量体系。其最终结果是获得散射介质在一定方向上具有一定偏振态的散射光强随频率分布的谱图。 激光拉曼光谱仪分析是一种非破坏性的微区分析手段,液体、粉末及各种固体样品均不需特殊处理即可用于拉曼光谱的测定。拉曼光谱可以单独,或与其他技术(如X

拉曼光谱仪知识

  1. 含义  光照射到物质上发生弹性散射和非弹性散射,弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。  当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射

拉曼光谱仪概述

当光与介质发生相互作用时,会产生吸收、反射、透射和发射等多种光学效应和现象。1923年奥地利科学家Srnekal预言了光的非弹性散射现象,1928年印度科学家Raman(拉曼)和Krishnan首次从实验上观察到此现象。他们在四氯化碳(CC1t)等液体中发现在入射光频率的两端出现对称分布的明锐谱线,

拉曼成像光谱仪

  拉曼成像光谱仪是一种用于生物学、基础医学、临床医学、药学领域的分析仪器,于2013年12月31日启用。  技术指标  1) 激光器:内置3个激光器 —532nm、638nm和785nm; 2) 光栅:4块光栅全自动切换,自由选择多种光谱分辨率; 3) 光谱范围:100cm-1到4000cm-1,

简述显微拉曼光谱仪与便携拉曼光谱仪的优势区别

  高利通科技显微拉曼光谱仪与便携拉曼光谱仪并无太大的区别,非要说不同,那就是显微拉曼光谱仪是便携拉曼光谱仪基础上多一个显微镜,可实现探测更加精密的物质。    显微拉曼光谱仪的优势:    1、灵活的采样方式:      2、高精度探测镜:      3、高品质、高灵敏探测器:    CCD探测器

拉曼光谱仪的特点

分类这种东西跟分类方式有关,以下仅是一种分法现代拉曼光谱分析技术持续发展中,被用来增强灵敏度(表面增强拉曼效应)、改善空间性的分辨率(微拉曼光谱仪),或者取得特殊的分析讯号(共振拉曼光谱)。表面增强拉曼通常以金或银的胶体或者基板上附着金或银的纳米粒子。金或银粒子的表面等离子共振由雷射所激发,其结果产

拉曼光谱仪的特点

分类这种东西跟分类方式有关,以下仅是一种分法现代拉曼光谱分析技术持续发展中,被用来增强灵敏度(表面增强拉曼效应)、改善空间性的分辨率(微拉曼光谱仪),或者取得特殊的分析讯号(共振拉曼光谱)。表面增强拉曼通常以金或银的胶体或者基板上附着金或银的纳米粒子。金或银粒子的表面等离子共振由雷射所激发,其结果产

拉曼光谱仪的特点

分类这种东西跟分类方式有关,以下仅是一种分法现代拉曼光谱分析技术持续发展中,被用来增强灵敏度(表面增强拉曼效应)、改善空间性的分辨率(微拉曼光谱仪),或者取得特殊的分析讯号(共振拉曼光谱)。表面增强拉曼通常以金或银的胶体或者基板上附着金或银的纳米粒子。金或银粒子的表面等离子共振由雷射所激发,其结果产

拉曼光谱仪的应用

  拉曼光谱仪是一种无损、非接触的光谱分析析技术,几乎不需要任何的样晶前期处理即可进行检测。目前应用已经非常广泛,在物理、化学、材料等很多领域均有应用。随着拉曼技术的不断发展,相信以后的应用会更加普遍。今天主要给大家介绍一下拉曼光谱仪的应用具体有一下几点:   1、制药学   药物罔质异性体/溶

拉曼图谱的原理

拉曼(Raman)光谱作为现代物质分子结构研究的重要方法之一,被广泛应用于物质微结构的研究,其主要是通过拉曼位移(拉曼振动频率) Δv来确定物质的结构.它提供的结构信息是关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团,进而进行分子结构的识别.拉曼位移就是分子振动

拉曼图谱的原理

拉曼(Raman)光谱作为现代物质分子结构研究的重要方法之一,被广泛应用于物质微结构的研究,其主要是通过拉曼位移(拉曼振动频率) Δv来确定物质的结构。它提供的结构信息是关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团,进而进行分子结构的识别。拉曼位移就是分子振动

拉曼图谱的原理

拉曼(Raman)光谱作为现代物质分子结构研究的重要方法之一,被广泛应用于物质微结构的研究,其主要是通过拉曼位移(拉曼振动频率) Δv来确定物质的结构.它提供的结构信息是关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团,进而进行分子结构的识别.拉曼位移就是分子振动

拉曼图谱的原理

拉曼(Raman)光谱作为现代物质分子结构研究的重要方法之一,被广泛应用于物质微结构的研究,其主要是通过拉曼位移(拉曼振动频率) Δv来确定物质的结构.它提供的结构信息是关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团,进而进行分子结构的识别.拉曼位移就是分子振动

激光拉曼光谱仪结构和原理是什么

  激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。  拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不仅改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。  对于

拉曼光谱仪指纹性原理技术优势

  在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。“拉曼散射”是指一定频率的激光照射到样品表面时,物质中的分子吸收了部分能量,发生不同方式和程度的振动(例如:原子的摆动和扭动,化学键的摆动和振动),然后散射出较低频率的光。频率的变化决定于散射物质的特性,不同

拉曼光谱仪指纹性原理技术优势

  在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。“拉曼散射”是指一定频率的激光照射到样品表面时,物质中的分子吸收了部分能量,发生不同方式和程度的振动(例如:原子的摆动和扭动,化学键的摆动和振动),然后散射出较低频率的光。频率的变化决定于散射物质的特性,不同

拉曼课堂小知识(一)拉曼光谱的原理

1.拉曼光谱的原理是什么?光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来

简介激光显微共焦拉曼光谱仪拉曼位移

  在透明介质散射光谱中,入射光子与分子发生非弹性散射,分子吸收频率为ν0 的光子,发射ν0-ν1的光子,同时电子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为ν0的光子,发射ν0+ν1的光子,同时电子从高能态跃迁到低能态(反斯托克斯线)。靠近瑞利散射线的两侧出现的谱线称为小拉曼光谱;远离瑞利散