拉曼光谱仪的工作原理

当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^~10^,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因此称该散射光为拉曼散射。在拉曼散射中,散射光频率相对入射光频率减少的,称之为斯托克斯散射,因此相反的情况,频率增加的散射,称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常大多测定的是斯托克斯散射,也统称为拉曼散射。 散射光与入射光之间的频率差v称为拉曼位移,拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的(电子云发生变化)。拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,ΔE反映了指定能级的变化......阅读全文

拉曼光谱仪工作原理

一、拉曼光谱的产生当激光照射在样品表面,其散射光的绝大部分是瑞利散射光,同时还有少量的各种波长的斯托克斯散射光和更少量的各种波长的反斯托克斯散射光,后两者被称为拉曼散射。这些散射光由反射镜等样品外光路系统收集后经人射狭缝照射在光栅上被色散,色散后不同波长的光依次通过出射狭缝进入光电探测器件,经信号放

拉曼光谱仪的工作原理

  当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光

拉曼光谱仪的工作原理

当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^~10^,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了

拉曼光谱仪的工作原理

  当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^~10^,该散射光不仅传播方向发生了改变,而且该散射光的频率也发

拉曼光谱仪的工作原理

当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光的频

拉曼光谱仪的工作原理

  当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光

拉曼光谱仪的工作原理

  当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光

便携拉曼光谱仪的工作原理

  便携拉曼光谱仪主要适用于科研院所、高等院校物理和化学实验室、生物及医学领域等光学方面,研究物质成分的判定与确认;可以应用于石油产品的快速分类和成分定性定量分析;地质勘探的现场分析研究。该仪器以其结构简单、操作简便、测量快速准确,以低波数测量能力著称;采用共焦光路设计以获得更高分辨率,可对样品表面

便携式拉曼光谱仪的工作原理

工作原理  当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变方向发生散射,而光的频率仍与激发光的频率相同,这种散射称为瑞利散射;约占总散射光强度的 10-6~10-10的散射,不仅改变了光的传播方向,而且散射光的频率也改变了,不同于激发光的频率,称为拉曼散射。拉曼散

拉曼光谱仪的原理

其原理为当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散

拉曼光谱仪的原理

拉曼光谱仪的原理是利用拉曼散射来测量物质的成分、分子结构和相互作用及变化过程。它最大的优点是快速和无损。快速:几秒就可以出结果;无损:不损伤被测物质,也无需制样。。拉曼光谱仪的用途非常广泛,也简单介绍一些。制药工程:药品检测、原料检测与质量控制、结晶过程监视等;宝石鉴定:珠宝玉石的品种、真假、染色及

拉曼光谱仪的原理

其原理为当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散

拉曼光谱仪的原理

其原理为当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散

拉曼光谱仪的原理

 拉曼光谱(Raman spectra) ,是一种散射光谱,也是一种振动光谱技术。       拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。       拉曼散射

拉曼光谱仪的原理

其原理为当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散

拉曼光谱仪适用范围及工作原理

拉曼光谱仪主要适用于科研院所、高等院校物理和化学实验室、生物及医学领域等光学方面,研究物质成分的判定与确认;还可以应用于刑侦及珠宝行业进行检测及宝石的鉴定。该仪器以其结构简单、操作简便、测量快速高效准确,以低波数测量能力著称;采用共焦光路设计以获得更高分辨率,可对样品表面进行um级的微区检测,也可用

拉曼光谱仪的工作原理及应用领域

  工作原理  当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,

简介拉曼光谱仪的原理

  当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光

【科普】拉曼光谱的工作原理

  拉曼散射效应的进展   1928年,印度物理学家拉曼(C.V.Raman)发现曼散射效应,荣获1930年的诺贝尔物理学奖。   1928-1940年,拉曼光谱成为研究分子结构的主要手段。   1960年以后,激光技术的发展使拉曼技术得以复兴。由于激光束的高亮度、方向性和偏振性等优点,成为拉

拉曼光谱仪的工作参数介绍

   当开始进行样品测试时,需注意选择正确的工作参数和条件。    激光器的功率要随不同测试样品而改变,对固体或液体等不易分解的可用较强功率激发,生物样品等应选较低功率激发。    积分时间可在开始时选择10s一次,正式测量时可根据信噪比的情况而定,信噪比高的积分时间可稍短,反之可采用较长时间积

拉曼光谱仪原理及应用

拉曼光谱仪原理及应用:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。分子运动包括整体的平动、转动、振动及电子的运动。分子总能量可近似为这些运动的能量之和,分别是分子的

拉曼光谱仪原理及优点

  拉曼主要是研究物质成分的判定与确认,还可以应用于刑侦及珠宝行业进行毒品的检测及宝石的鉴定。该以其结构简单、操作简便、测量快速高效准确,以低波数测量能力着称;采用共焦光路设计以获得更高分辨率,可对样品表面进行um级的微区检测,也可用此进行显微影像测量。   工作原理:   它的主要原理就是利用

拉曼光谱仪原理及应用

拉曼光谱仪原理是当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同。在拉曼散射中,散射光频率相对入射光频率减少的,称之为斯托克斯散射,因此相反的情况,频率增加的散射,称为反斯托克斯散射,斯托克斯

激光拉曼光谱仪的原理简述

  激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。  拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不仅改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。  对于

拉曼技术CCD工作原理简图

CCD 探测器需要冷却到较低温度以采集高质量光谱,冷却方式通常有两种:一种是半导体制冷,可达到的最低温度为 -90℃;另一种是液氮低温制冷,最低温度达到 -196℃。大多数拉曼光谱系统使用半导体制冷方式,但是对一些特殊应用,液氮冷却的探测器仍有其独特优势。CCD 的尺寸是决定单次采谱范围的重要因素,

拉曼激光器的工作原理

当光线照射一个物体时,它会造成在此物体内部的原子同步震动。碰撞到这个物体的光子中,有部分光子会取得或是丧失能量,造成不同波长的光出现。将这个不同波长的光,导入一个特定装置,经过反射及碰撞,增强它的能量,就可以产生出一个同步的激光光束,这就是拉曼激光。

拉曼激光器的工作原理

当光线照射一个物体时,它会造成在此物体内部的原子同步震动。碰撞到这个物体的光子中,有部分光子会取得或是丧失能量,造成不同波长的光出现。将这个不同波长的光,导入一个特定装置,经过反射及碰撞,增强它的能量,就可以产生出一个同步的激光光束,这就是拉曼激光。

拉曼光谱仪测试原理图

拉曼光谱(Raman spectra) ,是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。最常用的红外及拉曼光谱区域波长是2.5~25μm。(中红外区)

激光拉曼光谱仪的原理结构介绍

  用可见激光(也有用紫外激光或近红外激光进行检测)来检测处于红外区的分子的振动和转动能量,它是 一种间接的检测方法:把红外区的信息变到可见光区,并通过差频(即拉曼位移)的方法来检测  组成:激光光源:He-Ne激光器,波长632.8nm;Ar激光器,波长514.5 nm,488.0nm;散射强度∝

激光拉曼光谱仪的简介和原理

  简介  拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差和化合物振动频率、转动频率的关系的分析方法。与红外光谱类似,拉曼光谱是一种振动光谱技术。所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐。  仪器原理  一定波长