dna变性温度与dna的组成有什么关系
对双链DNA进行加热变性,当温度升高到一定高度时,DNA溶液在260nm处的吸光度突然明显上升至最高值,随后即使温度继续升高,吸光度也不再明显变化。若以温度对DNA溶液的紫外吸光率作图,得到的典型DNA变性曲线呈S型(如下图)。可见DNA变性是在一个很窄的温度范围内发生的。通常将核酸加热变性过程中,紫外光吸收值达到最大值的50%时的温度称为核酸的解链温度,由于这一现象和结晶的融解相类似,又称融解温度(Tm,melting temperature)。在Tm时,核酸分子内50%的双螺旋结构被破坏。特定核酸分子的Tm值与其G+C所占总碱基数的百分比成正相关,两者的关系可表示为:? Tm=69.3+0.41*(G+C)%?一定条件下(相对较短的核酸分子),Tm值大小还与核酸分子的长度有关,核酸分子越长,Tm值越大;另外,溶液的离子强度较低时,Tm值较低,融点范围也较宽,反之亦然,因此DNA制剂不应保存在离子强度过低的溶液中。......阅读全文
变性DNA的定义
中文名称变性DNA英文名称denatured DNA定 义由于物理(如过热)或化学(如加入尿素)等因素的影响,使之失去生物活性的DNA分子。不再具有致密的、双链的螺旋结构,而成为松散的和单链的结构。去除变性因素,DNA一般可以复性。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
什么是DNA变性?
DNA变性,是指核酸双螺旋碱基对的氢键断裂,碱基间的堆积力遭到破坏,双链变成单链,使核酸的天然构象和性质发生改变,但不涉及其一级结构的改变。凡能破坏双螺旋稳定的因素(如加热、极端的pH、有机试剂如甲醇、乙醇、尿素及甲酰胺等)均可引起核酸分子变性。变性后的DNA常发生一些理化及生物学性质的改变:
什么是变性DNA?
中文名称变性DNA英文名称denatured DNA定 义由于物理(如过热)或化学(如加入尿素)等因素的影响,使之失去生物活性的DNA分子。不再具有致密的、双链的螺旋结构,而成为松散的和单链的结构。去除变性因素,DNA一般可以复性。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
变性DNA的结构特点
中文名称变性DNA英文名称denatured DNA定 义由于物理(如过热)或化学(如加入尿素)等因素的影响,使之失去生物活性的DNA分子。不再具有致密的、双链的螺旋结构,而成为松散的和单链的结构。去除变性因素,DNA一般可以复性。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
细胞化学词汇变性DNA
中文名称:变性DNA英文名称:denatured DNA定 义:由于物理(如过热)或化学(如加入尿素)等因素的影响,使之失去生物活性的DNA分子。不再具有致密的、双链的螺旋结构,而成为松散的和单链的结构。去除变性因素,DNA一般可以复性。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级
DNA变性的融解温度
对双链DNA进行加热变性,当温度升高到一定高度时,DNA溶液在260nm处的吸光度突然明显上升至最高值,随后即使温度继续升高,吸光度也不再明显变化。若以温度对DNA溶液的紫外吸光率作图,得到的典型DNA变性曲线呈S型(如下图)。可见DNA变性是在一个很窄的温度范围内发生的。通常将核酸加热变性过程中,
DNA变性的融解温度介绍
对双链DNA进行加热变性,当温度升高到一定高度时,DNA溶液在260nm处的吸光度突然明显上升至最高值,随后即使温度继续升高,吸光度也不再明显变化。若以温度对DNA溶液的紫外吸光率作图,得到的典型DNA变性曲线呈S型。可见DNA变性是在一个很窄的温度范围内发生的。通常将核酸加热变性过程中,紫外光
关于DNA变性的应用介绍
DNA变性,也可用于检测两个不同的DNA序列之间之序列差异。将DNA加热和变性成单链状态,并将该混合物冷却使可以重新进行杂交。杂交分子的相似序列中如果互补序列有差异,则会导致碱基配对中断。在基因组范围中,该方法已被用于估算两物种之间遗传距离的研究,称为DNA-DNA杂交。在其中的单个分区的DNA
dna变性温度与dna的组成有什么关系
对双链DNA进行加热变性,当温度升高到一定高度时,DNA溶液在260nm处的吸光度突然明显上升至最高值,随后即使温度继续升高,吸光度也不再明显变化。若以温度对DNA溶液的紫外吸光率作图,得到的典型DNA变性曲线呈S型(如下图)。可见DNA变性是在一个很窄的温度范围内发生的。通常将核酸加热变性过程中,
关于DNA变性的基本信息介绍
变性DNA常发生一些理化及生物学性质的改变: 1)溶液粘度降低。DNA双螺旋是紧密的刚性结构,变性后代之以柔软而松散的无规则单股线性结构,DNA粘度因此而明显下降。 2)溶液旋光性发生改变。变性后整个DNA分子的对称性及分子局部的构性改变,使DNA溶液的旋光性发生变化。 3)增色效应(hy
变性梯度凝胶电泳不同的双链DNA-片段
不同的双链DNA 片段因为其序列组成不一样,所以其解链区域及各解链区域的解链浓度也是不一样的。当它们进行DGGE时,一开始变性剂浓度比较小,不能使双链DNA 片段最低的解链区域解链,此时DNA 片段的迁移行为和在一般的聚丙烯酰胺凝胶中一样。然而,一旦变性剂浓度达到DNA 片段最高的解链区域温度时
制备DNA测序模板实验——双脱氧测序的双链质粒DNA的碱变性
实验材料DNA试剂、试剂盒NaOHEDTA乙酸钠乙醇仪器、耗材离心管离心机摇床实验步骤1. 加入约0.5 pmol 重组质粒DNA于0.5 ml 微量离心管中,如果体积大于20 μl 应以乙醇沉淀,重溶于20 μl 水。2. 如果体积小于20 μl,用水补足20 μl。3. 加入2 μl 2
抗单链(变性)DNA抗体检测的临床意义
抗ssDNA的测定结果缺乏疾病特异性,除SLE患者有较高检出率(50%~60%)外,其他风湿病如混合性结缔组织病(MCTD)、药物诱导的狼疮、硬皮病、皮肌炎、干燥综合征,类风湿性关节炎等也都有10%~70%的检出率。当抗dsDNA阴性而SLE的诊断尚未明确时,高滴度抗ssDNA的存在对诊断也有参
PCR技术中DNA受高温变性说明其具有什么性
90~95摄氏度会解旋,书上好象没有说这是什么性呃,老师也没讲.温度不能太高,一般来说,DNA解链(氢键断裂)的温度在100℃以内,具体数值和DNA链中G、C碱基的含量有关,G、C碱基含量越多,DNA解链温度越高.如果温度太高,DNA是会断裂的(磷酸二脂键断裂),即使降温,也无法重新合成双链了.
根据核酸的吸收光谱,如何判断DNA的变性和复性
DNA的变性、复性和杂交1.变性,这是DNA最重要的一个性质。①DNA双链之间以氢键连接,氢键是一种次级键,能量较低,易受破坏,在某些理化因素作用下,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为DNA变性。DNA变性只涉及二级结构改变,不伴随一级共价键的断裂。②监测DN
核酸的变性的变性温度
热变性一半时的温度称为熔点或变性温度,以Tm来表示。DNA的G+C含量影响Tm值。由于G≡C比A=T碱基对更稳定,因此富含G≡C的DNA比富含A=T的DNA具有更高的熔解温度。根据经验公式xG+C =(Tm -69.3)× 2.44可以由DNA的Tm值计算G+C含量,或由G+C含量计算Tm值。
什么核酸变性?
在一定理化因素作用下,核酸双螺旋等空间结构中碱基之间的氢键断裂,变成单链的现象称为变性(denaturation)。引起核酸变性的常见理化因素有加热、酸、碱、尿素和甲酰胺等。在变性过程中,核酸的空间构象被破坏,理化性质发生改变。由于双螺旋分子内部的碱基暴露,其A260值会大大增加。A260值的增加与
甲醛变性电泳
实验概要本实验介绍了RNA电泳(即甲醛变性电泳)的原理及操作步骤等。实验原理提取样品的总RNA后,一般根据RNA的凝胶电泳图来判断RNA的质量。由于RNA容易形成二级结构,因此常用甲醛变性胶来进行RNA电泳,得到的电泳图能真实反映RNA的质量状况。将RNA通过凝胶电泳使之在凝胶中分离出来,通过加入标
关于蛋白质变性的变性结果介绍
1、生物活性丧失 蛋白质的生物活性是指蛋白质所具有的酶、激素、毒素、抗原与抗体、血红蛋白的载氧能力等生物学功能。生物活性丧失是蛋白质变性的主要特征。有时蛋白质的空间结构只要轻微变化即可引起生物活性的丧失。 2、某些理化性质 蛋白质变性后理化性质发生改变,如溶解度降低而产生沉淀,因为有些原来
还原/非还原、变性/非变性SDS具体有什么不同
SDS是一种有效的变性剂,它能够断裂蛋白质分子的氢键和疏水作用,这个是SDS的一般原理,这也就是所讲的还原性SDS,这也是最有效的一种,因为键的断裂伴随的是蛋白质分子的伸展,这样我们的SDS就可以根据蛋白质的情况结合,从而把我们的蛋白质分子带上负电荷,可以电泳。有一点就是这是我们讲的还只是SDS。并
还原/非还原、变性/非变性SDS具体有什么不同
SDS是一种有效的变性剂,它能够断裂蛋白质分子的氢键和疏水作用,这个是SDS的一般原理,这也就是所讲的还原性SDS,这也是最有效的一种,因为键的断裂伴随的是蛋白质分子的伸展,这样我们的SDS就可以根据蛋白质的情况结合,从而把我们的蛋白质分子带上负电荷,可以电泳。有一点就是这是我们讲的还只是SDS。并
椎间盘变性的简介
椎间盘 椎间盘是位于人体脊柱两椎体之间,由软骨板、纤维环、髓核组成的一个密封体。上下有软骨板,是透明软骨覆盖于椎体上,下面骺环中间的骨面。上下的软骨板与纤维环一起将髓核密封起来。纤维环由胶原纤维束的纤维软骨构成,位于髓核的四周。纤维环的纤维束相互斜行交叉重叠,使纤维环成为坚实的组织,能承受较大
变性梯度凝胶电泳
实验材料 DNA样品试剂、试剂盒 尿素去离子甲酰胺丙烯酰胺甲叉双丙烯酰胺琼脂糖 仪器、耗材 PCR扩增仪变性梯度凝胶电泳仪凝胶成像及分析系统紫外透射仪高速离心机电泳仪电泳槽微量加样器Tip头Tip头盒Eppendorf管Eppendorf管架
核酸的变性的作用
变性作用是核酸的重要性质。核酸的变性指核酸双螺旋结构被破坏,氢键断裂,变为单链。核酸变性只涉及次级键的变化,并不引起共价键的断裂。引起变性的因素很多,升高温度、过酸、过碱、纯水以及加入变性剂等可破坏氢键,妨碍碱基堆积作用和增加磷酸基团静电斥力的因素都能造成核酸变性。核酸变性后,260nm的紫外吸
蛋白质的变性
蛋白质变性是指当天然蛋白质受到物理或化学因素的影响时,使蛋白质分子内部的二、三、四级结构发生异常变化,从而导致生物功能丧失或物理化学性质改变的现象。 常见的引起蛋白质变性的因素有:物理因素:热作用、高压、剧烈震荡、辐射等;化学因素有:酸、碱、重金属离子、高浓度盐、有机溶剂等。 变性对蛋白质功
非变性胶蛋白电泳
Section 2.1Nondenaturing Polyacrylamide Gel Electrophoresis of ProteinsJohn M. Walker1. IntroductionSDS-PAGE (Section 2.2) is probably the most commo
核酸变性的概念、诱因
在一定理化因素作用下,核酸双螺旋等空间结构中碱基之间的氢键断裂,变成单链的现象称为变性(denaturation)。引起核酸变性的常见理化因素有加热、酸、碱、尿素和甲酰胺等。在变性过程中,核酸的空间构象被破坏,理化性质发生改变。由于双螺旋分子内部的碱基暴露,其A260值会大大增加。A260值的增加与
椎间盘变性的临床诊断
影像学表现 1、CT表现 ①椎间盘高度降低:CT扫描侧位定位片及矢状面重建像可显示这一改变。 ②椎间盘真空变性:90%为氮气,横断面示椎间盘内不规则气体密度区。20-40岁可有35%出现此征象。 ③许莫氏结节(Schmorl's nods):为脱出髓核通过终板进入椎体的压迹,表现
变性梯度凝胶电泳
变性梯度凝胶电泳(DGGE) 实验方法原理 1. 变性梯度凝胶电泳(DGGE)是一种根据DNA片段的熔解性质而使之分离的凝胶系统。核酸的双螺旋结构在一定条
RNA甲醛变性胶电泳
提取样品的总RNA后,一般根据RNA的凝胶电泳图来判断RNA的质量。由于RNA容易形成二级结构,因此常用甲醛变性胶来进行RNA电泳,得到的电泳图能真实反映RNA的质量状况。一、试剂:DEPC(Sigma公司产品),MOPs(Bocherigmer公司产品),甲酰胺(Formamide,Sigma公司