高速逆流色谱仪的技术发展简介

技术发展 1.[2]20世纪70年代,出现了液滴逆流色谱(DCCC)特点: (1)流体静力学原理(Hydrostatic equilibrium system,HSES) (2)分离时间过长、连接处容易出现渗漏等 2.20世纪70年代出现了离心分配色谱仪(Centrifugal partition chromatography,CPC)特点: (1)基于流体静力学原理(Hydrostatic equilibrium system,HSES),利用公转产生的单一力场。 (2) 连接处较多而且容易出现渗漏,清洗维护复杂 。 3.20世纪80年开始出现了现在的高速逆流色谱,可称为最先进的逆流色谱。......阅读全文

关于高速逆流色谱的高速逆流色谱的概述

  高速逆流色谱仪(High-speed Countercurrent Chromatography,简称HSCCC),于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术。  高速逆流色谱 ( high-speed countercurrent chromatog

简介高速逆流色谱的仪器结构介绍

  仪器的中心部分:  (a) ITO多层线圈分离柱,它是由100-200米长、内径为1.6mm左右的聚四氟乙烯管沿具有适当内径的内轴共绕十多层而成,其管内总体积可达300mL左右。(b)平衡器,它可以调节重量,它的作用是让(a), (b)相对于中心轴两边重量平衡。当在旋转控制器的控制下,在齿轮传动

高速逆流色谱仪原理特点及应用

   高速逆流色谱法于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术,与其它色谱技术不同的是它不需任何固态载体,因此能避免固相载体表面与样品发生反应而导致样品的污染、失活、变性和不可逆吸附等不良影响。   高速.jpg    同时它也具有适用范围广、快速

浅述高速逆流色谱仪的工艺原理

 高速逆流色谱仪是一种新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料、不需使用固态固定相的情况下,而是利用离心力产生的恒定力将固定相保留在由管道连接的一系列的腔体中,实现复杂化学物质的混合物分离。它以液体溶剂为固定相,螺旋柱在行星运动时产生的离心力,使互不相溶的两相不断互相混合,同时保留其

简述高速逆流色谱仪的应用领域

  应用领域  (1)天然产物已知有效成分的分离纯化  (2)化学合成物质的分离纯化  (3)中药一类、五类新药的开发  (4)中药指纹图谱和质量控制研究  (5)抗生素的分离纯化  (6)天然产物未知有效成分的分离纯化(新化合物开发)  (7)海洋生物活性成分的分离纯化  (8)放射性同位素分离 

高速逆流色谱

高速逆流色谱(High-speed Countercurrent Chromatography,简称HSCCC)是由美国国家医学院Yiochiro Ito博士于1982年首先开始的。到目前为止,此项技术已用于生物化学、生物工程、医学、药学、天然产物化学、有机合成、化工、环境、农业、 食品、材

关于高速逆流色谱的中心部分简介

  (a) ITO多层线圈分离柱,它是由100-200米长、内径为1.6mm左右的聚四氟乙烯管沿具有适当内径的内轴共绕十多层而成,其管内总体积可达300mL左右。(b)平衡器,它可以调节重量,它的作用是让(a), (b)相对于中心轴两边重量平衡。当在旋转控制器的控制下,在齿轮传动装置作用下,(a),

高速逆流色谱仪常用溶剂体系选择方法

1.       已知的溶剂体系被分离物质种类基本两相溶剂体系辅助溶剂非极性或弱性物质正庚(已)烷-甲醇氯烷烃正庚(已)烷-乙腈-氯烷烃正庚(己)烷-甲醇(或乙腈)-水中等极性物质氯仿-水甲醇,正丙醇,异丙醇乙酸乙酯-水正己烷,甲醇,正丁醇极性物质正丁醇-水甲醇,乙酸2.       分配系数测定法

高速逆流色谱仪常用溶剂体系选择方法

高速逆流色谱仪常用溶剂体系选择方法 1.       已知的溶剂体系被分离物质种类基本两相溶剂体系辅助溶剂非极性或弱性物质正庚(已)烷-甲醇氯烷烃正庚(已)烷-乙腈-氯烷烃正庚(己)烷-甲醇(或乙腈)-水中等极性物质氯仿-水甲醇,正丙醇,异丙醇乙酸乙酯-水正己烷,甲醇,正丁醇极性物质正丁醇-水甲醇,

浅述高速逆流色谱仪所具备的优点

 高速逆流色谱仪是一种较新型的液—液分配色谱,其原理是基于样品在旋转螺旋管内的互不混溶的两相溶剂间分配不同而获得分离,因而无须任何固体载体或支撑体,能达到在短时间内实现分离和制备,并且可以达到几千个理论塔板数。与其他柱色谱相比较,它克服了固定相载体带来的样品吸附、损失、污染和峰形施尾等缺点。  高速

高速逆流色谱仪分离纯化芦荟多糖的研究

摘要:采用紫外-可见分光光度计法进行了高速逆流色谱技术分离芦荟多糖的溶剂系统研究,得出了高速逆流色谱分离芦荟多糖的溶剂系统为w( PEG600) ∶ w( KH2PO4) ∶ w( K2HPO4) ∶ w( H2O) = 5∶ 15∶ 15∶ 65,加入NaCl 的质量分数为2%。在水浴温度30 ℃

高速逆流色谱原理

1. 逆流色谱是20世纪50年代源于多极萃取技术(非连续性)多极萃取技术但是多极萃取设备庞大复杂、易碎、溶剂体系容易乳化,溶剂耗量大,分离时间长。2. 通过公转、自转(同步行星式运动)产生的二维力场,保留两相中的其中一相作为固定相高速逆流色谱原理2.通过高速旋转提高两相溶剂的萃取频率,1000rpm

高速逆流色谱构造

高速逆流色谱构造:仪器的中心部分:(a) ITO多层线圈分离柱,它是由100-200米长、内径为1.6mm左右的聚四氟乙烯管沿具有适当内径的内轴共绕十多层而成,其管内总体积可达300mL左右。(b)平衡器,它可以调节重量,它的作用是让(a), (b)相对于中心轴两边重量平衡。当在旋转控制器的控制下,

高速逆流色谱的特点

  应用范围广,适应性好  由于溶剂系统的组成及配比可以是无限多的,因而从理论上讲可以适用于任何极性范围内样品的分离,在分离天然化合物方面具有其独到之处。由于聚四氟乙烯管中的固定相为液体不需要固相载体,因而可以消除固-液色谱中由于使用固相载体而带来的吸附损失,特别适用于分离极性物质。  操作简便,容

高速逆流色谱的构造

  仪器的中心部分:(a) ITO多层线圈分离柱,它是由100-200米长、内径为1.6mm左右的聚四氟乙烯管沿具有适当内径的内轴共绕十多层而成,其管内总体积可达300mL左右。(b)平衡器,它可以调节重量,它的作用是让(a), (b)相对于中心轴两边重量平衡。当在旋转控制器的控制下,在齿轮传动装置

高速逆流色谱的特点

高速逆流色谱的特点应用范围广,适应性好由于溶剂系统的组成及配比可以是无限多的,因而从理论上讲可以适用于任何极性范围内样品的分离,在分离天然化合物方面具有其独到之处。由于聚四氟乙烯管中的固定相为液体不需要固相载体,因而可以消除固-液色谱中由于使用固相载体而带来的吸附损失,特别适用于分离极性物质。操作简

J型高速逆流色谱仪的演进和发展(一)

一、综述J型高速逆流色谱仪采用多层缠绕分离柱通过行星式公转+自转产生的离心力以及不同物质在上下两相溶剂中的溶解度差等因素实现物质的分离。高速逆流色谱技术相比传统的分离纯化手段的优点在于较高的分离效率和较大的制备量以及溶剂使用成本的降低。J型高速逆流色谱仪内部核心部件组成包括至少一个分离柱,一个公转轴

J型高速逆流色谱仪的演进和发展(二)

2.2.1 解绕轴传统解绕方法是采用PTFE软管加解绕轴进行连接的,基本原理如下所示:如图,箭头指示为分离柱旋转方向,其搭配一个转速相同但与其反向旋转的解绕轴来完成红色管路的解绕。在运行过程中,由于转速相同但转向相反,所以红色管路不会因为转动而缠绕折损,最后解绕轴与中心轴组成最后一个解绕管路,将管路

高速逆流色谱仪的常见故障解决方法

高速逆流色谱仪是一种新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料、不需使用固态固定相的情况下,而是利用离心力产生的恒定力将固定相保留在由管道连接的一系列的腔体中,实现复杂化学物质的混合物分离。它以液体溶剂为固定相,螺旋柱在行星运动时产生的离心力,使互不相溶的两相不断互相混合,同时保留其中

J型高速逆流色谱仪的演进和发展(三)

2.4.2 压缩机空调直冷压缩机空调直冷的方法是将主机部分更改为开放式结构,完全与机器内部连通;并在机器外壳挂装工业级控温空调系统,直接对机器内部空间进行控制,从而最终实现主机温度恒定。主机温度的控制最后都需要空气作为介质作用于分离柱,压缩机空调直冷无论从温度改变速度上和能力上都要强于温控水浴(水浴

J型高速逆流色谱仪演进及未来(四)

三、演进过程随着分离柱,解绕方式,减震系统,温控系统相关技术的发展,高速逆流色谱仪的发展也经历了从单分离柱+解绕管,三分离柱+解绕管,多分离柱+旋转密封模式的演变。3.1单分离柱+解绕管最初引进逆流色谱技术时,国内的高速逆流色谱仪生产厂家采用了单分离柱加解绕管的结构设计逆流色谱仪,这种设备的共同特点

J型高速逆流色谱仪演进及未来(三)

2.2.2.1 系统死体积         高速逆流色谱仪设备,除去有效柱容积部分,都可以称之为死体积,这些管路不参与分离过程,只作为必要连接管路存在,所以死体积越少越好。通常最常见的方法可将机器外部连接管路在压力允许的情况下通过选用更细更短的管路的简单方法来尽量减少死体积的存在,而机器内部的死

J型高速逆流色谱仪演进及未来(二)

2.1.2 双分离柱将单分离柱配重块换成分离柱组成双分离柱系统,这样就解决了平衡问题,也扩展了机器容量,但是需要更多的管路来进行连接,这种机型理论最大β值为1,在实际应用中,因为分离柱加工缠绕以及机械结构稳定性等设计考虑,β值不可能实际到达1。其结构示意图如下所示:2.1.3 三分离柱三分离柱同双分

J型高速逆流色谱仪演进及未来(一)

目录一、综述... 3二、关键技术... 32.1 分离柱... 32.1.1 单分离柱... 32.1.2 双分离柱... 42.1.3 三分离柱... 42.2 管路解绕... 52.2.1 解绕轴... 52.2.2 旋转密封... 52.3 减震系统... 62.3.1 传统减震... 62

高速逆流色谱的影响因素

  1.固定相的保留值  在逆流色谱中,留在管中固定相的量是影响溶质峰分离度的一个重要因素,高保留量将会大大改进峰分离度。  仪器对保留值的影响(外因) 研究表明:螺旋管支持件的自转半径r与公转半径R之比B值是一个影响两相互不混溶溶剂在旋转螺旋管内保留的关键因素。用大直径的支持件使值进一步提高,能导

高速逆流色谱的发展历程

  高速逆流色谱是在1982年,美国国立卫生院的一个教授首先研究和发展起来的一种不同于传统液相色谱法的现代色谱分离制备技术。作为一种新的色谱技术,HSCCC分离系统可以理解为以螺旋管式离心分离仪代替HPLC的柱色谱系统。HSCCC不使用固相载体作固定相, 克服了固相载体带来的样品吸附、损失、污染和峰

高速逆流色谱的发展历史

  1.20世纪70年代,出现了液滴逆流色谱(DCCC)  特点:  (1)流体静力学原理(Hydrostatic equilibrium system,HSES)  (2)分离时间过长、连接处容易出现渗漏等  2.20世纪70年代出现了离心分配色谱仪(Centrifugal partition c

高速逆流色谱的原理概述

  高速逆流色谱的原理概述   HSCCC利用一种特殊的流体动力学(单向流体动力学平衡)现象。具体表现为一根100多米长的螺旋空管,注入互不相溶的两相溶剂中的一相作为固定相,然后作行星运动;同时不断注入另一相(流动相),由于行星运动产生的离心力场使得固定相保留在螺旋管内,流动相则不断穿透固定相;这

高速逆流色谱的技术原理

  HPCPCTM是一个新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料的情况下,执行复杂的化学物质的混合物分离。它以液体溶剂替代了传统的制备型高效液相色谱填充柱为固定相和另一液体溶剂做流动相在一个高性能的离心系统分区进行操作。不需使用固态固定相,而是利用离心力产生的恒定力场将固定相保留在由

高速逆流色谱的研究热点

  近年来,溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。目前三相溶剂还只用于标