Antpedia LOGO WIKI资讯

基于宽度学习的微型机器人智能轨迹追踪方法

近日,中国科学院深圳先进技术研究院集成所智能仿生研究中心副研究员徐升和研究员徐天添研究团队合作,将宽度学习算法成功应用于微型机器人轨迹追踪控制中,将数据驱动的思想用于微型机器人控制器设计,由示教训练替换复杂调参,并推导训练算法参数约束以保障稳定性能,极大提升了微型机器人轨迹追踪的准确性及控制器的灵活调整能力。研究成果发表在人工智能领域期刊IEEE Transactions on Cybernetics上。 可以在低雷诺数的流体环境作业的螺旋形微型机器人由于尺度很小,可以轻松在复杂狭小的空间作业,在靶向治疗上有非常大的应用潜力。然而,受系统强非线性、给定轨迹多样性的影响,如何实现微型机器人的精准轨迹追踪的同时又能避免频繁的控制器调整,是十分具有挑战的工作。基于人工智能的学习算法对于解决以上问题有着突出优势。宽度学习算法自2017年被提出后,主要应用在图像处理、特征辨识、数据分析等领域,其模型相比于传统的深度学习模型,在保证一......阅读全文

基于宽度学习的微型机器人智能轨迹追踪方法

  近日,中国科学院深圳先进技术研究院集成所智能仿生研究中心副研究员徐升和研究员徐天添研究团队合作,将宽度学习算法成功应用于微型机器人轨迹追踪控制中,将数据驱动的思想用于微型机器人控制器设计,由示教训练替换复杂调参,并推导训练算法参数约束以保障稳定性能,极大提升了微型机器人轨迹追踪的准确性及控制器的

会流动的微型机器人

  苏黎世ETH正在进行一项研究,有朝一日,我们只需吞下药物,就可以将微型机器人输送到病变组织。   洛桑理工学院(EPFL)的Selman Sakar领导一队科学家,从细菌中汲取灵感,设计出具有高度灵活性的智能生物相容性微型机器人。这些装置能在液体中游泳,并根据环境改变形状,因此,它们可以

柔性微型机器人可在体内“游泳”

  瑞士和英国研究人员日前在美国《科学进展》杂志上发表报告说,他们开发出一款柔性微型机器人。“像活体微生物”一般,这款机器人可在有黏性或快速流动的液体中“游泳”,未来有望将药物送达体内的病灶组织。  论文通讯作者、瑞士苏黎世联邦理工大学的布拉德利·内尔松说,自然界有许多随环境变化而变形的微生物,他们

微型游泳机器人有望治疗致命肺炎

北京9月22日,美国加利福尼亚大学圣地亚哥分校的纳米工程师已开发出抗肺炎微型机器人,它可在肺部四处游动,提供药物并用于清除危及生命的细菌性肺炎感染。在小鼠试验中,微型机器人安全地消除了引起肺炎的细菌,小鼠存活率达100%,相比之下,未经治疗的小鼠在感染后3天内全部死亡。研究结果22日发表在《自然·材

向人脑学习,研发神经机器人

   伴随着多学科的发展,机器人的应用领域也广阔起来,其中就包括生物学与医学涉及的神经学领域。  在刚刚结束的2016世界机器人大会上,来自德国慕尼黑工业大学教授Alois C.Knoll就做了一场关于神经机器人的演讲。他不仅回顾了历史,更畅想了未来。  模拟人类神经系统  今年5月,德国科学家们研

智能微型机器人可随周围环境“变身”

  据美国每日科学网站近日报道,瑞士洛桑联邦理工学院(EPFL)和苏黎世联邦理工学院的科学家,携手开发出一种微型柔性机器人,可根据周围环境而改变形状。未来,这款机器人或可被我们吞服,将药物直接递送到病灶组织。  自然界有许多随环境变化而变形的微生物,由EPFL的塞尔曼·萨卡尔和苏黎世联邦理工学院的布

智能微型机器人用电子“大脑”自主行走

据发表在21日的《科学·机器人》杂志的论文,美国康奈尔大学的研究人员在100到250微米大小的太阳能机器人上安装了比蚂蚁头还小的电子“大脑”,这样它们就可以在不受外部控制的情况下自主行走。 这项创新为新一代微型设备奠定了基础,这些设备可以跟踪细菌、嗅出化学物质、摧毁污染物、进行显微手术并清除动脉

以细菌为基础的生物混合微型机器人

斯图加特-马克斯普朗克智能系统研究所身体智能系的一组科学家通过装备将机器人与生物学结合起来:细菌与人工成分构建生物杂交微型机器人。首先,如图1所示,研究小组将几个纳米脂质体附着在每个细菌上。在它们的外圈,这些球形载体包裹着一种材料(ICG,绿色粒子),这种材料在近红外光照射下就会融化。再往中间,在水

磁热联合驱动微型软体机器人研究取得进展

  近日,中国科学院沈阳自动化研究所机器人学国家重点实验室微纳米自动化课题组在磁热联合驱动的微型软体机器人研究中取得新进展。科研人员利用4D打印技术制备的软体机器人在近红外光和磁场的联合驱动下,展示了弯曲形变、夹取及搬运功能,在微结构搬运、药物控释等方面展现出重要的应用前景。相关研究成果发表在Com

中国科研人员开发出“蚁群”微型机器人

  中国科研人员日前开发出一种磁性微游动机器人,可像“蚁群”一样成千上万地组队协同作业,有望为高效靶向给药和体内成像提供解决方案。   发表在新一期美国《科学·机器人学》杂志上的这一研究显示,这种呈花生状的磁性机器人长3微米,直径2微米,只有头发丝直径的约四十分之一。由大量这种机器人组成的群体可