光谱的原理和起源

复色光中有着各种波长(或频率)的光,这些光在介质中有着不同的折射率。因此,当复色光通过具有一定几何外形的介质(如三棱镜)之后,波长不同的光线会因出射角的不同而发生色散现象,投映出连续的或不连续的彩色光带。这个原理亦被应用于著名的太阳光的色散实验。太阳光呈现白色,当它通过三棱镜折射后,将形成由红、橙、黄、绿、蓝、靛、紫顺次连续分布的彩色光谱,覆盖了大约在390到770纳米的可见光区。历史上,这一实验由英国科学家艾萨克·牛顿爵士于1665年完成,使得人们第一次接触到了光的客观的和定量的特征。......阅读全文

光谱的原理和起源

  复色光中有着各种波长(或频率)的光,这些光在介质中有着不同的折射率。因此,当复色光通过具有一定几何外形的介质(如三棱镜)之后,波长不同的光线会因出射角的不同而发生色散现象,投映出连续的或不连续的彩色光带。这个原理亦被应用于著名的太阳光的色散实验。太阳光呈现白色,当它通过三棱镜折射后,将形成由红、

拉曼光谱的起源和应用

拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

光谱学的起源和发展

  光谱学的研究已有三百多年的历史了。1666年,I.牛顿把通过玻璃棱镜的太阳光展成从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是最早对光谱的研究。其后一直到1802年,W.H.渥拉斯顿与1814年 J.von夫琅和费彼此独立地观察到了光谱线。每条谱线只代表一种“颜色”的光。这

DNA印迹法的起源和原理

这种方法最初是由Southern于1975年建立的。方法中DNA转移的方式和复印的过程一样,比较准确地保持了特异DNA顺序在电泳图谱中的位置,也可将变性的凝胶负压干燥后与特定的DNA探针进行原位杂交。它把电泳分离和杂交结合起来,不但能检测出特异的DNA序列片段,而且能进行定位和测定分子量。即先以电泳

生物芯片的技术起源和原理

生物芯片,又称蛋白芯片或基因芯片,它们起源于DNA杂交探针技术与半导体工业技术相结合的结晶。该技术系指将大量探针分子固定于支持物上后与带荧光标记的DNA或其他样品分子(例如蛋白,因子或小分子)进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。

免疫荧光技术的起源和原理

免疫荧光(immunofluorescence technic)Coons等于1941年首次采用荧光素进行标记而获得成功。这种以荧光物质标记抗体而进行抗原定位的技术称为荧光抗体技术(fluorescentantibodytechnique)。用荧光抗体示踪或检查相应抗原的方法称荧光抗体法;用已知的荧

革兰染色法的起源和原理

这种染色法是由丹麦医生革兰于1884年所发明,最初是用来鉴别肺炎球菌与克雷伯肺炎菌。革兰染色法一般包括初染、媒染、脱色、复染等四个步骤。未经染色的细菌,由于其与周围环境折光率差别甚小,故在显微镜下极难区别。经染色后,阳性菌呈紫色,阴性菌呈红色,可以清楚地观察到细菌的形态、排列及某些结构特征,从而用以

X射线衍射的起源和基本原理

1912年,劳厄等人根据理论预见,证实了晶体材料中相距几十到几百皮米(pm)的原子是周期性排列的;这个周期排列的原子结构可以成为X射线衍射的“衍射光栅”;X射线具有波动特性, 是波长为几十到几百皮米的电磁波,并具有衍射的能力。这一实验成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于

离心机的起源及、作原理和类别

一.离心机起源于18世纪产业革命后,随着纺织工业的迅速发展,1836年出现了棉布脱水机。这是zui早的三足离心机,此后一百多年来,三足式离心机经过不断的技术深化,形成了十几个系列共计一百多种规格产品,完全覆盖了分离市场的方方面面,二.离心机分类按出料方式:三足式上卸料离心机三足式下卸料离心机按构造特

ICPMS的基本原理和ICPMS起源是什么

  ICP-MS全称电感耦合等离子体质谱(Inductively Coupled Plasma Mass Spectrometry),可分析几乎地球上所有元素。  ICP-MS仪器所使用的等离子体除了方位和线圈接地方式外,与发射光谱中使用的基本相同。所使用的质量分析器、离子检测器和数据采集系统又与四

基因的历史和起源

基因是控制生物性状的基本遗传单位。19世纪60年代,奥地利遗传学家格雷戈尔·孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。1909年丹麦遗

RNAi的发现和起源

首次发现dsRNA能够导致基因沉默的线索来源于线虫Caenorhabditis elegans的研究。>1995年,康乃尔大学的Su Guo博士和>Kemphues在试图阻断秀丽新小杆线虫(C.  elegans)中的par-1基因时,发现了一个意想不到的现象。她们本是利用反义RNA技术特异性地阻断

拉曼光谱的原理和应用

拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

膜电位的概念和起源

膜电位(Membrane Potential)通常是指以膜相隔的两溶液之间产生的电位差。一般是指细胞生命活动过程中伴随的电现象,存在于细胞膜两侧的电位差。膜电位在神经细胞通讯的过程中起着重要的作用。1791年意大利解剖学家加伐尼(L.Galvani)偶然发现,如果将蛙腿的肌肉置于铁板上再用铜钩钩住蛙

细胞疗法的定义和起源

细胞疗法是一种将活细胞注入患者体内以治疗疾病的治疗手段,如在免疫治疗中将T细胞移入至患者体内后通过细胞介导免疫以对抗癌细胞,或移植干细胞至患者体内促使病变组织再生。细胞疗法起源于十九世纪,在二十世纪中期,研究人员发现,人体细胞能减缓患者身体对器官移植的排斥,从而使得骨髓移植能顺利完成。近几十年来,干

球棍模型的概念和起源

球棍模型(英语:Ball-and-stick models)是一种空间填充模型(space-filling model),用来表现化学分子的三维空间分布。在此作图方式中,线代表化学键,可连结以球型表示的原子中心。最早的球棒分子模型是由德国化学家奥古斯特·威廉·冯·霍夫曼(August Wilhelm

Westernblot法的起源和发展

生物大分子印迹法实际上是凝胶电泳技术、固定化技术及分子亲和技术三者融为一体的综合性技术,其核心在于把凝胶电泳已分离的区带转移并印迹于固定化纸上。生物大分子印迹法始创于1975年,内苏格兰爱丁堡大学E.M.Southern首先提出。他将限制酶切后的DNA片段先进行琼脂糖凝胶电泳,把一张硝酸纤维素纸放在

塞曼效应的起源和历史

塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的。他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力

“细胞”的起源和研究历史

细胞(Cells)是由英国科学家罗伯特·胡克(Robert Hooke,1635~1703)于1665年发现的。当时他用自制的光学显微镜观察软木塞的薄切片,放大后发现一格一格的小空间, 就以英文的cell命名之,而这个英文单字的意义本身就有小房间一格一格的用法,所以并非另创的字汇。而这样观察到的细胞

热分析的起源和发展

1899年英国罗伯特-奥斯汀(Roberts-Austen)次使用了差示热电偶和参比物,大大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。1915年日本东北大学本多光太郎,在分析天平的基础上研发了“热天平”即热重法(TG),后来法国人也研发了热天平技术。 1964年美国瓦特逊(Watson)

拉曼光谱原理和图解

  基于印度科学家C.V.拉曼(Raman)发现拉曼散射效应:不同的入射光频率的散射光谱进行分析所得到的分子振动、转动的信息,并应用于分子结构分析研究的一种分析方法,称为拉曼光谱(Raman spectra)。其中,拉曼光谱是一种散射光谱。  1. 激光拉曼光谱基本原理  激光入射到样品,产生散射光

光谱分析的定性原理和定量原理

一、光谱分析的定性原理通过光谱的研究,人们可以得到原子、分子等的能级结构、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的信息。与此同时,光谱学方法应用在获取物质组成方面的信息,为化学分析提供了多种重要的定性与定量的分析方法。光谱分析一般可依据物质与光的相互作用产生的光谱的特征

ICP光谱仪的简介和原理

  电感耦合等离子体发射光谱仪又称为ICP光谱仪、ICP原子发射光谱仪,以电感耦合高频等离子体为激发光源,利用每种元素的原子或离子发射特征光谱来判断物质的组成,进行元素的定性与定量分析。  可以看到,ICP光谱仪主要由进样系统、电感耦合等离子体光源(ICP)、光谱仪的分光(色散)系统以及检测器-光电

红外吸收光谱的原理和用途

工作原理红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。用途可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法,利用化学键的特征波数来鉴别

光谱分析的原理和过程

光谱分析法是根据物质的光谱来鉴别物质及确定其化学组成和相对含量的方法,是以分子和原子的光谱学为基础建立起的分析方法。 可利用物质在不同光谱分析法的特征光谱对其进行定性分析,根据光谱强度进行定量分析。光谱分析包含三个主要过程:①能源提供能量②能量与被测物质 相互作用③产生被检测讯号

光纤光谱仪的应用和紫外光谱环境原理

  1、光纤光谱仪的应用特点   国内光纤光谱仪厂家深圳有限公司研制的小型光纤光谱仪运用非对称穿插式Czerny-Turner分光构造,此光学平台的设计是在Czerny-Turner构造根底上停止光路的改良,使光谱仪外部构件布局更紧凑,可进一步小型化。   光纤光谱仪的特点   低损耗光纤、低

抗体酶的起源和发展

抗体酶,又称催化抗体,是一类具有催化能力的免疫球蛋白,即通过一系列化学与生物技术方法制备出的具有催化活性的抗体,它既具有相应的免疫活性,又能像酶那样催化某种化学反应。1984年列那(Lerner)进一步推测:以过渡态类似物作为半抗原,则其诱发出的抗体即与该类似物有着互补的构象,这种抗体与底物结合后,

微流控技术原理及起源

  微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统( MEMS )技术的发展,电子计算机已由当年的”庞然大物”演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。  MEMS技术全称Micro Electromechanical System , M

荧光光谱仪的原理和应用

  目前荧光分析法已经发展成为一种重要且有效的光谱化学分析手段。在我国,50年代初期仅有极少数的分析化学工作者从事荧光分析方面的研究工作,但到了70年代后期,荧光分析法已引起国内分析界的广泛重视,在全国众多的分析化学工作者中,已逐步形成一支从事这一领域工作的队伍。  一、荧光分析特点  (1)荧光分

荧光光谱法的原理和应用

荧光光谱法具有灵敏度高、选择性强、用样量少、方法简便、工作曲线线形范围宽等优点,可以广泛应用于生命科学、医学、药学和药理学、有机和无机化学等领域。荧光分光光度计的发展经历了手控式荧光分光光度计,自动记录式荧光分光光度计,计算机控制式荧光分光光度计三个阶段;荧光分光光度计还可分为单光束式荧光分光光度计