微生物电极法的适用范围
适用于地表水、生活污水和不含对微生物有明显毒害作用的工业废水中生化需氧量的测定。......阅读全文
微生物电极法的适用范围
适用于地表水、生活污水和不含对微生物有明显毒害作用的工业废水中生化需氧量的测定。
微生物电极法检测BOD
生化需氧量(BOD5)传统的测定方法为标准稀释法,该方法需要5天分析周期,操作过程烦琐,因而给污水处理及环境检测带来了许多不便。 YC71-LB50型BOD快速测定仪采用微生物电极法,能快速测定水样中的BOD值,而且操作简便,测量准确。其原理基于微生物对有机物的耗氧代谢,可在8分钟内完成一个样品的
参比电极的适用范围
各类参比电极的适用范围 用具有适当输入阻抗的直流电压表、测试线和一支稳定的参比电极,例如饱和铜/硫酸铜参比电极(CSE)、银/氯化银电极(Ag/AgCl)或饱和氯化钾(KCl)甘汞电极,就可以进行管道对电解质电位测量。当电解质是土壤或淡水时,一般用CSE测量,但它不适用于海水中。当在高氯环境下
参比电极的适用范围
各类参比电极的适用范围 用具有适当输入阻抗的直流电压表、测试线和一支稳定的参比电极,例如饱和铜/硫酸铜参比电极(CSE)、银/氯化银电极(Ag/AgCl)或饱和氯化钾(KCl)甘汞电极,就可以进行管道对电解质电位测量。当电解质是土壤或淡水时,一般用CSE测量,但它不适用于海水中。当在高氯环境下
固态参比电极的适用范围
用具有适当输入阻抗的直流电压表、测试线和一支稳定的参比电极,例如饱和铜/硫酸铜参比电极(CSE)、银/氯化银电极(Ag/AgCl)或饱和氯化钾(KCL)甘汞电极,就可以进行管道对电解质电位测量。当电解质是土壤或淡水时,一般用CSE测量,但它不适用于海水中。当在高氯环境下使用CSE时,在确认读数的
微生物电极法BOD速测仪技术原理
符合标准:符合国家环保总局颁布的HJ/T86-2002标准《水质BOD微生物传感器快速测定法》在《水和废水监测分析方法》第四版中列为A类方法。 技术原理:将微生物膜紧固于氧电极上组成微生物电极,当含有饱和溶解氧的水样进入流通池中与微生物传感器接触,水样中溶解性可生化降解的有机物受到微生物菌膜中菌种的
什么是电极法?电极法的相关标准
国际标准分类中,电极法涉及到导体材料、核能工程、绝缘流体、燃料、物理学、化学、电池和蓄电池、化工产品、航空航天制造用材料、石油产品综合、无机化学、土质、土壤学、环境试验、电子元器件组件、润滑剂、工业油及相关产品、分析化学、焊接、钎焊和低温焊、石蜡、沥青材料和其他石油产品。在中国标准分类中,电极法涉及
微生物电极法BOD速测仪优越的性能特点
微生物电极法BOD速测仪先进的技术原理 将 微生物膜紧固于氧电极上组成微生物电极,当含有饱和溶解氧的水样进入流通池中与微生物传感器接触,水样中溶解性可生化降解的有机物受到微生物菌膜中菌种的 作用,使扩散到氧电极表面上氧的质量减少。当水样中可生化降解的有机物向菌膜扩散速度(质量)达到恒定时,此
参比电极的类型及适用范围
类型 监测金属电位所用的参比电极应该工作稳定、可靠,并且便宜、易于制作、安装和使用方便。 电极的类型: 一类是可逆电极——甘汞电极、硫酸铜电极 优点:电位稳定,监测值精确度高。 缺点:易损坏,安装、固定较困难。 另一类固体金属电极—固体金属电极 特点:应用于电位范围较宽的系统,且制
微生物电极法BOD快速分析仪
TC-50A型BOD(生化需氧量)快速测定仪是我公司研发人员参照《HJ/T86-2002水质生化需氧量(BOD)的测定 微生物传感器快速测定法》结合实际实验环境研发而成的一款新型生化需氧量测定仪,该款仪器采用微生物电极法并结合微电脑数字信号处理技术,使得测量时间大为缩短,并且测量结果与5日培养法
微生物电极法BOD测定仪原理
测量原理 仪器采用微生物电极法,将微生物膜紧贴在极谱式溶解氧电极的透氧膜表面,即构成微生物电极。仪器采用流通测量方式,即样品以流动方式通过微生物电极微生物膜里含有大量好氧微生物,在有氧和有机物的环境下非常活跃,氧电极的输出电流与溶解氧的浓度成正比,不含有机物的液体通过流通池时,透过微生物膜的溶
微生物电极法BOD快速测定仪原理
微生物电极法,是将微生物膜紧贴在极谱式溶解氧电极的透氧膜表面,即构成微生物电极。仪器采用流通测量方式,即样品以流动方式通过微生物电极。微生物膜里含有大量好氧微生物,在有氧和有机物的环境下非常活跃,并对有机物具有广谱食性,适应性强。由于氧电极的输出电流与溶解氧的浓度成正比,当不含任何有机物的液体通过流
玻璃电极的pH适用范围是多少
在用pH玻璃电极测定酸度过高或碱度过高的溶液时,其电位响应会偏离线性,产生pH测定误差。在酸度过高的溶液中测得的pH值偏高,这种误差称为"酸差"。在碱度过高的溶液中,由于H+太小,其他阳离子在溶液和界面间可能进行交换而使得pH值偏低,尤其是Na+的干扰较显著,这种误差称为"碱差"或"钠差"。现在常使
淀粉碘化镉法检测微生物絮凝剂的适用范围
淀粉 - 碘化镉法检测微生物絮凝剂通常适用于以下范围:不同来源的微生物产生的絮凝剂:包括细菌、真菌等微生物所产生的具有絮凝作用的物质。多种类型的微生物絮凝剂:例如含有可被氧化的官能团(如酰胺基)的微生物絮凝剂。微生物絮凝剂的定量检测:可用于确定样品中微生物絮凝剂的含量,从而评估微生物的絮凝能力和相关
余氯的电极法测试
余氯一般是指溶液中游历氯(例如次氯酸根)浓度,而非氯离子浓度。所以余氯与氯离子是二个不同的含义。在水处理中的加氯量:一部分是实际消耗的需氯量,即这部分氯在杀灭水中的细菌与微生物,以及与有机物的反应过程中被消耗掉了,另一部分是剩余的氯量,剩余的氯量就叫余氯。 加氯法消毒需要水中存在一定浓度的剩
余氯的电极法测试
余氯一般是指溶液中游历氯(例如次氯酸根)浓度,而非氯离子浓度。所以余氯与氯离子是二个不同的含义。在水处理中的加氯量:一部分是实际消耗的需氯量,即这部分氯在杀灭水中的细菌与微生物,以及与有机物的反应过程中被消耗掉了,另一部分是剩余的氯量,剩余的氯量就叫余氯。 加氯法消毒需要水中存在一定浓度的
余氯的电极法测试
余氯一般是指溶液中游历氯(例如次氯酸根)浓度,而非氯离子浓度。所以余氯与氯离子是二个不同的含义。在水处理中的加氯量:一部分是实际消耗的需氯量,即这部分氯在杀灭水中的细菌与微生物,以及与有机物的反应过程中被消耗掉了,另一部分是剩余的氯量,剩余的氯量就叫余氯。 加氯法消毒需要水中存在一定浓
电极法余氯测试
1、为何说加氯法消毒是最普遍的水质消毒法?水的消毒方法可分化学和物理的两种。物理消毒方法有加热法、紫外线法、超声波等法。化学方法有加氯法、臭氧法、去重金属离子法以及其他氧化剂法等。其中以加氯法使用最为普通,因为氯的消毒能力强,价格便宜,设备简单,余氯测定方便,便于加量调节等优点而得到广泛应用。日常生
电极法余氯测试
1、为何说加氯法消毒是zui普遍的水质消毒法?水的消毒方法可分化学和物理的两种。物理消毒方法有加热法、紫外线法、超声波等法。化学方法有加氯法、臭氧法、去重金属离子法以及其他氧化剂法等。其中以加氯法使用zui为普通,因为氯的消毒能力强,价格便宜,设备简单,余氯测定方便,便于加量调节等优点而得到广泛应用
氨气敏电极法
方法提要试样用硫酸钾、硫酸铜作为混合催化剂,用硫酸煮解氧化,使试料中的氮转化为硫酸铵,再用氢氧化钠碱化。以氨气敏电极测量电极势,氨气敏电极氨离子有响应,其电极电势与被测溶液中氨离子活度呈正相关。试剂硫酸钾。硫酸铜。氯化铵。氯化钠(或氯化银)。硫酸。氮标准溶液ρ(N)=1.00mg/mL,0.10mg
微生物培养箱的适用范围
BD系列 自然对流完全适合于微生物的培养、微生物加热及调节。 BF系列 尤其适合于试样有较高批量和产出量的应用场合。 KB系列 适用于在广阔温度范围内的复杂用途和交替温度的场合。
内标法和外标法各自的适用范围
外标法就是用标准品的峰面积或峰高与其对应的浓度做一条标准曲线,测出样品的峰面积或峰高,在标准曲线上查出其对应的浓度,这是最常用的一种定量方法,内标法是对应外表法说的,外表法需要用样品和标准品对比,但是有时我们很难保证样品和标准品进的体积是一样的,毕竟要有误差,这时候就用内标法,就是在外标法的基础上,
内标法和外标法各自的适用范围
外标法就是用标准品的峰面积或峰高与其对应的浓度做一条标准曲线,测出样品的峰面积或峰高,在标准曲线上查出其对应的浓度,这是最常用的一种定量方法,内标法是对应外表法说的,外表法需要用样品和标准品对比,但是有时我们很难保证样品和标准品进的体积是一样的,毕竟要有误差,这时候就用内标法,就是在外标法的基础上,
离子色谱法的适用范围
离子色谱法是一种分析无机和有机离子的液相色谱技术,能测定数百种阴、阳离子和化合物,最适合多组分与多元素的同时分析。该方法选择性好,样品用量少,灵敏度高,易实现自动化,是分析水中阴离子的最好方法,多应用于环境水样的测定。
吸附色谱法的适用范围
吸附色谱法可以将吸附剂装填于柱中、覆盖于板上、或浸渍于多孔滤纸中。吸附剂是具有大表面积的活性多孔固体,例如硅胶、氧化铝和活性炭等。活性点位例如硅胶的表面硅烷醇,一般与待分离化合物的极性官能团相互作用。分子的非极性部分(例如烃)对分离只有较小影响,所以液-固色谱法十分适于分离不同种类的化合物(例如,分
水蒸气蒸馏法的适用范围
水蒸气蒸馏法适合分离那些在其沸点附近容易分解的物质,也适用于从不挥发物质或树脂状物质中分离出所需的组分(如天然产物香精油、生物碱等)。使用此法被提纯的物质必须具备以下条件: ①不溶于水或微溶于水; ②具有一定的挥发性; ③在共沸温度下与水不发生反应; ④在100℃左右,必须具有一定的蒸气
离子选择电极法(ISE)
离子选择电极(ISE)是一种电化学传感器,其结构中有一个对特定离子具有选择性响应的敏感膜,将离子活度转换成电位信号,在一定范围内,其电位与溶液中特定离子活度的对数呈线性关系,通过与已知离子浓度的溶液比较可求得未知溶液的离子活度,按其测定过程又分为直接测定法和间接测定法,目前大部分采用间接测定法,由于
离子选择电极法(ISE)
离子选择电极(ISE)是一种电化学传感器,其结构中有一个对特定离子具有选择性响应的敏感膜,将离子活度转换成电位信号,在一定范围内,其电位与溶液中特定离子活度的对数呈线性关系,通过与已知离子浓度的溶液比较可求得未知溶液的离子活度,按其测定过程又分为直接测定法和间接测定法,目前大部分采用间接测定法,由
膜电极法测定溶解氧的方法的适用范围
本方法适用于天然水、污水和盐水,如果用于测定海水或港湾水这类盐水,须对含盐量进行校正。本方法不仅可以用于实验室内测定,还可用于现场测定和自动在线连续监测。 根据所采用电极的不同类型,可测定氧的浓度(mg/L)或氧的饱和百分率(%溶解氧)或者二者皆可测定。本方法可测定水中饱和百分率为0%至100%的溶
关于电位分析法的指示电极和参比电极介绍
电位分析法的基本原理是用两支电极与待测溶液组成工作电池(原电池),通过测定该工作电池的工作电池的电动势,设法求出待测物质的含量。 组成工作电池的两支电极分别称作指示电极和参比电极。所谓指示电极,是指该电极的电极电位与待测物质的含量有确定的函数关系,即ψ指示=f(a)(其中,a是待测物质的活度)