计算超分辨图像重建算法拓展荧光显微镜分辨率极限

自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。 近日,发表在《Nature Biotechnology》上的一项题为“Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy”的研究中,来自哈尔滨工业大学和北京大学的研究团队发明了基于新计算原理的超分辨显微成像技术,进一步拓展荧光显微镜的分辨率极限。在时空分辨率上成功将空间分辨率从110nm提高到60nm,同时保持毫秒级的时间分辨率 研究人员通过提出“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个通用先验知识,结合之前提出的信号时空连续性先验知识,发明了两步迭代解......阅读全文

计算超分辨图像重建算法拓展荧光显微镜分辨率极限

  自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。  近日,发表在《Nature Biotechnology》上的一项题为“Spar

计算超分辨图像重建算法拓展荧光显微镜分辨率极限

  自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。  近日,发表在《Nature Biotechnology》上的一项题为“Spar

发明计算超分辨图像重建算法拓展荧光显微镜分辨率极限

  自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。  近日,发表在《Nature Biotechnology》上的一项题为“Spar

分辨率最高太阳图像出炉

迄今分辨率最高太阳图像出炉 图片来源:美国《新闻周刊》网站  迄今分辨率最高太阳图像于近日新鲜“出炉”!在图像中,人们可以看到明显的米粒状结构,每个“米粒”的大小都跟美国德州的面积差不多。研究人员称,这些图像提供的前所未有的细节,能帮助科学家研究太阳磁场,从而进一步揭示太阳的奥秘。  据美国《新闻

布鲁克推出Vutara352超分辨率荧光显微镜

  分析测试百科网讯 2015年12月14日,布鲁克在2015细胞生物学ASCB年会上推出首款用于定量分析的超分辨率荧光显微镜Vutara352。Vutara352不仅在速度、成像深度和分辨率等方面具有优势,还加入了实时定量能力。这款产品拥有许多新功能,包括执行偶关联、协同定位、群集分析、活细胞分析

好消息:廉价显微镜也能获得超分辨率图像

德国哥廷根大学医学中心纳米专家Ali Shaib和Silvio Rizzoli团队开发了一种用于普通光学显微镜的方法——ONE显微镜的技术,这项技术记录了单个蛋白质图像和从未见过的细胞结构图像,其细节程度甚至超过了价值数百万美元的“超分辨率”显微镜。相关研究结果发表于预印本网站bioRxiv。“显微

图像的位分辨率的概念

图像的位分辨率(Bit Resolution)又称位深,是用来衡量每个像素储存信息的位数。这种分辨率决定可以标记为多少种色彩等级的可能性。一般常见的有8位、16位、24位或32位色彩。有时我们也将位分辨率称为颜色深度。所谓“位”,实际上是指“2”的平方次数,8位即是2的八次方,也就是8个2相乘,等于

获取高分辨率免疫细胞图像

  来自曼彻斯特大学的科学家们展示了一些新图像,提供了目前关于免疫细胞如何攻击病毒感染和肿瘤的最清晰画面。   他们揭示了,当受到病毒感染细胞或肿瘤细胞上的一类蛋白激活时,这些在人体内负责对抗感染和癌症的细胞,是如何改变它们表面分子的组织结构的。   曼彻斯特大学炎症研究协作中心(MCCIR)研

图像分辨率的概念及计算公式

图像分辨率(Image Resolution)指图像中存储的信息量。这种分辨率有多种衡量方法,典型的是以每英寸的像素数(PPI,pixel per inch)来衡量。当然也有以每厘米的像素数(PPC,pixel per centimeter)来衡量的。图像分辨率决定了图像输出的质量,图像分辨率和图像

高速图像重建助力实时超分辨成像

    JSFR-SIM算法和传统Wiener-SIM算法的重建流程对比示意图。    JSFR-SIM可实时显示微管和线粒体动态。    高速实时超分辨结构光照明显微成像光路(a)和快速实时超分辨结构光照明显微成像系统样机(b)。图片来源:论文作者    超分辨荧光显微成像技术打破

LSM​超分辨率和灵敏度。

超分辨率和灵敏度。       利用并行光谱采集和高速GPU去卷积的独特组合,提高图像质量。 Airyscan在横向120nm和轴向350nm的尺度上提供了高灵敏度的完美光学截面和超分辨率。这超越了去卷积方法,保留了在封闭针孔中通常被屏蔽了的宝贵的发射光信号,并实现了更高的分辨率

超分辨率荧光显微技术的意义

利用超高分辨率显微镜,可以让科学家们在分子水平上对活体细胞进行研究,如观察活细胞内生物大分子与细胞器微小结构以及细胞功能如何在分子水平表达及编码,对于理解生命过程和疾病发生机理具有重要意义。

达到光学分辨率极限的“最清晰”图像问世

  人类一直在追求分辨率更高的显像技术,以获得更清晰的图像,一项新研究让“最清晰”图像成为现实。这一图像在每英寸(约合2.54厘米)距离上可以有10万个像素点,这是光学分辨领域无法超越的理论极限。   英国《自然·纳米技术》杂志12日在线刊登报告说,新加坡研究人员完成了这样一幅

MolecularDevices发布超高分辨率图像处理系统

  Molecular Devices公司近日发布了MetaMorph®超高分辨率系统(MetaMorph® Super-Resolution System),实现了同步的图像获取和处理,为固定细胞和活细胞中小于250 nm的目标提供了细节。新系统特有实时的图像处理和GPU加速硬件,扩展了光

人类发育中胚胎最高分辨率图像

  现有许多荧光标记活细胞的方法都涉及对细胞的基因修饰,因此不适用于研究人类活胚胎。而在最新发表于《细胞》(Cell)上的一项研究中,研究者使用了一种无需基因修饰的荧光染色技术,并首次捕捉到了分辨率达细胞水平的早期人类胚胎实时发育图像。  研究使用的均为诊所捐赠的处于早期发育阶段的体外受精人类胚胎(

超分辨率荧光显微技术的技术获奖

2014年10月8日,2014年度诺贝尔化学奖揭晓,美国科学家埃里克·白兹格、威廉姆·艾斯科·莫尔纳尔和德国科学家斯特凡·W·赫尔三人获得。官方称,该奖是为表彰他们在超分辨率荧光显微技术领域取得的成就 。

2016年《科学》综述:超分辨率显微技术

从列文虎克到21世纪,显微镜由一个看似牢不可破的原则所控制:分辨两个对象的能力受限于观察它们的光波波长。 但在2000年,研究人员显示出, 这种所谓的衍射极限可以被打破, 在接下来的十年中揭示了从 GSDIM和 PALM到 SIM、STED 和 STORM 的一系列像“字母汤”一样的超分辨率技术 。

超分辨率荧光显微镜技术成功运用于外泌体的成像和追踪

  外泌体是由细胞分泌的小膜泡,富含大量的蛋白质。考虑到外泌体在不同生理活动中的显著作用以及在诊断、药物释放方面潜在的价值,研究人员在外泌体的体外追踪和内含物分析方面做了很大的努力。  目前,各种超分辨率显微镜的出现为外泌体的研究提供了强大的工具。2016 年 9 月,东南大学先进光子学中心主任崔一

超分辨荧光显微镜和普通荧光显微镜的区别

  两者在工作原理及应用方面存在不同。分述如下:  一、荧光显微镜  1、荧光显微镜是以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光

超分辨率激光共聚焦显微镜

  超分辨率激光共聚焦显微镜是一种用于化学、生物学领域的分析仪器,于2018年7月24日启用。  技术指标  1.在所有扫描方式下,均可以进行360°扫描旋转,0.1°步进,同时可以变倍以及移动扫描区域的中心。 2.扫描光学变倍≥40X,最好缩小≤0.6倍。 3.最大扫描分辨率≥8000 x 800

季铵哌嗪如何实现荧光超分辨率成像?

  近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但

信息分辨率和点分辨率怎么定义

在点分辨率之前的信号不用做phase fliping,后面的信号必须做,否则得到的图像不准确。

超分辨率显微镜实现自由运动神经环路高分辨成像

  提到在体小动物神经成像,人们自然会联想到钙离子荧光探针局部注射或遗传钙指示剂(如Gcamp家族)结合双/三光子显微镜的经典在体成像组合。  随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium ind

活细胞超分辨率显微技术研究获进展

  2016年12月31日,中国科学院生物物理研究所徐平勇课题组、中国科学院计算技术研究所张法课题组以及美国科学院院士HHMI研究员Jennifer Lippincott-Schwartz合作在《细胞研究》(Cell Research)在线发表了题为Live-cell single molecule

欧盟ChipScope项目:微型超分辨率光学显微镜

想象一下,把显微镜缩小,然后将其与芯片集成在一起,就可以使用它实时观察活细胞内部。如果像今天的智能手机相机一样,可以将这种微型显微镜也集成到电子产品中,那不是很好吗?如果医生设法使用这种工具在偏远地区进行诊断而又不需要大型、笨重和敏感的分析设备,该怎么办?欧盟资助的ChipScope项目在实现这些目

Science:细胞的MV————新光学超分辨率成像技术

  来自美国霍华德休斯医学研究所Janelia研究园、中科院生物物理所、美国国立科学研究院、哈佛医学院等的科学家们,借助其发展的新光学超分辨率成像技术,在前所未有的高分辨率条件下研究了活体细胞内的动态生物过程。他们的新方法显着的提高了结构光照明显微镜(structured illumination

超分辨率显微镜发展历程和技术原理

超分辨率显微镜发展历程 毫无疑问,自16世纪以来,光学显微镜已经历漫长的旅程。首次被知晓的复合显微镜是由Zacharias和Hans Janssen构造的。尽管这些显微镜没有保存下来,但人们确信这些显微镜已能够将放大倍率从3倍提高到9倍。17世纪末期,Leeuwenhoek首次将放大倍率和分辨率提高

超分辨率显微镜的各种不同技术对比

对于传统的光学显微镜,光的衍射让成像分辨率限制在大约250 nm。如今,超分辨率技术可以将此提高10倍以上。这种技术主要通过三种方法实现:单分子定位显微镜,包括光敏定位显微镜(PALM)和随机光学重建显微镜(STORM);结构照明显微镜(SIM);以及受激发射损耗显微镜(STED)。如何选择超分辨率

原理革新!超透镜分辨率提升一个量级

  超透镜能够超越传统光学成像分辨率的极限,实现亚波长级别的微观结构和生物分子的更好观测。然而,超透镜的本征损耗一直是该领域长期存在的关键科学问题,限制了成像分辨率的进一步提升。  近日,来自香港大学、国家纳米科学中心和英国帝国理工学院等机构的研究人员密切合作,提出了多频率组合复频波激发超透镜成像理

超分辨率显微镜的各种不同技术对比

对于传统的光学显微镜,光的衍射让成像分辨率限制在大约250 nm。如今,超分辨率技术可以将此提高10倍以上。这种技术主要通过三种方法实现:单分子定位显微镜,包括光敏定位显微镜(PALM)和随机光学重建显微镜(STORM);结构照明显微镜(SIM);以及受激发射损耗显微镜(STED)。