Antpedia LOGO WIKI资讯

我国学者在生物基可循环利用聚酯合成方面取得进展

图1 一类新型芳香—脂肪族聚酯的闭环循环 在国家自然科学基金项目(批准号:22071163和U19A2095)等资助下,四川大学朱剑波研究员团队在生物基可循环利用高分子材料领域取得进展。研究成果以“一类可完全回收的生物基高性能芳香—脂肪族聚酯(Biobased High-Performance Aromatic−Aliphatic Polyesters with Complete Recyclability)”为题,于2021年11月29日在线发表于《美国化学会志》(Journal of the American Chemical Society)上。论文链接:https://doi.org/10.1021/jacs.1c10162。 作为社会发展不可或缺的材料,有机高分子材料目前的全球年产量高达5亿吨,但是由于其废弃后不当处置造成严重的生态环境问题和资源浪费。利用生物质原料制备可循环利用聚合物被认为是实现高分子材料可持续性......阅读全文

我国学者在生物基可循环利用聚酯合成方面取得进展

图1 一类新型芳香—脂肪族聚酯的闭环循环  在国家自然科学基金项目(批准号:22071163和U19A2095)等资助下,四川大学朱剑波研究员团队在生物基可循环利用高分子材料领域取得进展。研究成果以“一类可完全回收的生物基高性能芳香—脂肪族聚酯(Biobased High-Performance A

我国学者在生物基可循环利用聚酯合成方面取得进展

图1 一类新型芳香—脂肪族聚酯的闭环循环  在国家自然科学基金项目(批准号:22071163和U19A2095)等资助下,四川大学朱剑波研究员团队在生物基可循环利用高分子材料领域取得进展。研究成果以“一类可完全回收的生物基高性能芳香—脂肪族聚酯(Biobased High-Performance A

合成聚酯生物医用材料的协同催化策略

  脂肪族聚酯类高分子材料是一类重要的合成医用高分子聚合物,具有良好的生物相容性和生物可降解性,广泛应用于手术缝合线、植入内固定器械、药物缓释等方面。其中应用最广泛的聚酯材料包括聚丙交酯 (PLA )、聚乙交酯 ( PGA )、聚戊内酯 (δ-PVL )及聚己内酯 (ε-PCL )等。对于这类广泛应

兰州化物所生物基可降解聚酯单体制备研究取得进展

  随着全球“碳中和、碳达峰”目标的不断推进,生物质固碳在“双碳”目标达成中的作用愈发重要。羟基脂肪酸酯是制备生物可降解聚酯材料的重要单体, 现有石化路线存在氧化反应步骤多、催化效率和选择性低等问题。生物质资源天然富氧(约占总质量30%~50%),从高原子经济利用角度出发,在其特殊碳氧分子结构基础上

青岛能源所开发出合成聚酯生物医用材料的协同催化策略

  脂肪族聚酯类高分子材料是一类重要的合成医用高分子聚合物,具有良好的生物相容性和生物可降解性,广泛应用于手术缝合线、植入内固定器械、药物缓释等方面。其中应用最广泛的聚酯材料包括聚丙交酯 (PLA )、聚乙交酯 ( PGA )、聚戊内酯 (δ-PVL )及聚己内酯 (ε-PCL )等。对于这类广泛应

大连化物所发展出利用生物质合成共聚酯单体新方法

  近日,中国科学院院士、中科院大连化学物理研究所催化与新材料研究室(十五室)研究员张涛与研究员王爱琴/李宁团队,联合生物能源化学品研究组研究员(DNL0603)王峰团队,发展出一种利用乙醛和丙烯酸酯的生物质合成共聚酯单体新方法。  随着现代社会的快速发展,各行各业对性质可调的共聚酯需求越来越高。聚

大连化物所发展出利用生物质合成共聚酯单体新方法

  近日,中国科学院院士、中科院大连化学物理研究所催化与新材料研究室(十五室)研究员张涛与研究员王爱琴/李宁团队,联合生物能源化学品研究组研究员(DNL0603)王峰团队,发展出一种利用乙醛和丙烯酸酯的生物质合成共聚酯单体新方法。  随着现代社会的快速发展,各行各业对性质可调的共聚酯需求越来越高。聚

研究人员发展出利用生物质合成共聚酯单体新方法

  近日,中国科学院院士、中科院大连化学物理研究所催化与新材料研究室(十五室)研究员张涛与研究员王爱琴/李宁团队,联合生物能源化学品研究组研究员(DNL0603)王峰团队,发展出一种利用乙醛和丙烯酸酯的生物质合成共聚酯单体新方法。   随着现代社会的快速发展,各行各业对性质可调的共聚酯需求越来越高

合成培养基与半合成培养基

合成培养基与半合成培养基在这里合成培养基是由化学成分完全了解的物质配制而成的培养基,同样可以称为限定培养基,高氏地号培养基和察氏培养基就属于这种类型。配制合成的培养基时它的重复性强,但是与天然的培养基相对来说成本是比较高的,微生物在其中生长速度比较慢,一般适用于实验室用来进行微生物营养需求、代谢、分

N-芳基吡唑衍生物的连续合成

吡唑在许多药物中是关键的药效基团。1969年从链霉菌中分离出的吡唑衍生物(1)具有广谱抗病毒活性。多种重磅药物塞来昔布(2,Celebrex),利莫那班(3,Acomplia),西地那非(4,Viagra)和最近批准的肺癌药物克唑替尼(5,Xalkori)具有吡唑亚结构。Figure 1具有吡唑结构

【技术】N-芳基吡唑衍生物的连续合成

  吡唑在许多药物中是关键的药效基团。1969年从链霉菌中分离出的吡唑衍生物(1)具有广谱抗病毒活性。多种重磅药物塞来昔布(2,Celebrex),利莫那班(3,Acomplia),西地那非(4,Viagra)和最近批准的肺癌药物克唑替尼(5,Xalkori)具有吡唑亚结构。   Figure 1

合成培养基配制实验

实验方法原理 干粉型培养基是用球磨机或喷雾法将各种培养液成分混合后制成,具有性质稳定、便于贮存和运输、使用方法简便等优点。具有维持细胞生存和代谢需要的效果,与传统方式制备的合成培养基一样好。干粉培养基因颗粒极细,很容易完全溶解于水,配制培养液方法极易掌握,只要按照说明书将规定重量的干粉溶解在一定量的

合成培养基的分类

高氏1号常用于培养、分离放线菌。成分:可溶性淀粉20g、KNO3 1g、NaCl 0.5g、K2HPO4·3H2O 0.5g,MgSO4·7H2O 0.5g,FeSO4·7H2O 0.01g,琼脂15 ~ 20g,蒸馏水1000mL,pH 7.2~7.4。制法:配制时,先用少量冷水将淀粉调成糊状,倒

合成培养基配制实验

合成培养液的配制 无血清培养基的制备             实验方法原理 干粉型培养基是用球磨机或喷雾法将各种培养液成分混合后制成,具有性质稳定、便于贮存和运输、使用方法

半合成培养基配方

  例如:玉米粉2%,豆粕粉1%,磷酸二氢钾0.1%,硫酸镁0.05%,蛋白胨0.1%,红糖0.6%,葡萄糖0.5%,水适量。  上面配方中既有玉米粉、豆粕粉这样的天然物质,又有磷酸二氢钾、硫酸镁这样的化学试剂,有不需要煮制,所以叫做半合成培养基。  优点:营养丰富,又不需要煮制,有大量悬浮颗粒,利

合成培养基的概念

合成培养基,亦称综合培养基。是指根据目标培养物所需营养物质的种类和数量,精确设计并由已知成分的纯化学药品人工配制而成的,可精确掌握各成分性质和数量的一类培养基。一般用于研究微生物的形态、营养代谢、分类鉴定、菌种选育、遗传分析等。常用的合成培养基有培养细菌的葡萄糖铵盐培养基,培养放线菌的高氏1号培养基

合成培养基的分类介绍

  高氏1号  常用于培养、分离放线菌。  成分:可溶性淀粉20g、KNO3 1g、NaCl 0.5g、K2HPO4·3H2O 0.5g,MgSO4·7H2O 0.5g,FeSO4·7H2O 0.01g,琼脂15 ~ 20g,蒸馏水1000mL,pH 7.2~7.4。  制法:配制时,先用少量冷水将

合成培养基的主要作用

合成培养基(synthetic medium),又称为组合培养基,是通过顺序加入准确称量的高纯度化学试剂与蒸馏水配制而成的,其所含的成分(包括微量元素在内)以及他们的量都是确切可知的。合成培养基一般用于实验室中进行的营养、代谢、遗传、鉴定和生物测定等定量要求较高的研究。

合成培养基的相关介绍

  合成培养基,亦称综合培养基。是指根据目标培养物所需营养物质的种类和数量,精确设计并由已知成分的纯化学药品人工配制而成的,可精确掌握各成分性质和数量的一类培养基。一般用于研究微生物的形态、营养代谢、分类鉴定、菌种选育、遗传分析等。常用的合成培养基有培养细菌的葡萄糖铵盐培养基,培养放线菌的高氏1号培

氰基吡啶水解法合成烟酸

氨氧化法该法以3-甲基吡啶或MEP为原料,在催化剂床层中与氨和氧气按一定比例进行气固相催化氧化,生成3-氰基吡啶,水解纯化得到烟酸。该工艺使3-甲基吡啶的单程转化率提高到99%,3-氰基吡啶水解制备烟酸的选择性也提高到99%。氨氧化法原料是吡啶碱生产过程中产出比例最高的副产物——3-甲基吡啶,价格低

中国科大研制出生物合成的纤维素基绝缘纳米纸

随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线(UV)环境、原子氧(AO)和高低温交替环境等,已经成为今后探索的主要障碍。在这些极端环境下,材料的物理化学特性会发生变化,严重时甚至会导致重要设备和装置的损坏。在传统材料当中,金属和陶瓷本身具有出色的机械性能和对

合成培养基配制实验——合成培养液的配制

合成培养基是根据研究和了解细胞所需成分基础上配制而成的。目的在于创制出与体内相似的生存环境。合成培养基有固定的组成成分,利于控制实验条件标准化。内容来源:组织培养和分子细胞学技术。(北京出版社)实验方法原理干粉型培养基是用球磨机或喷雾法将各种培养液成分混合后制成,具有性质稳定、便于贮存和运输、使用方

脂肪的生物合成

脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合

叶绿素的生物合成

  叶绿素和血红素的生物合成前体是ALA(氨基乙酰丙酸),两分子由谷氨酸合成的δ氨基乙酰丙酸(ALA)反应生成胆色素原(PBG)。4个PBG 分子形成原卟啉IX 的环状结构,叶绿素合成的第一步是由镁螯合酶插入Mg 离子,形成Mg-原卟啉,之后形成原叶绿素酯,再还原生成叶绿素酯。[1][2]  叶绿素

叶绿素的生物合成

  通过同位素标记实验、酶学研究和突变体分析,目前已经对叶绿素生物合成的途径有了详细的了解。  叶绿素和血红素的生物合成前体是ALA(氨基乙酰丙酸),两分子由谷氨酸合成的δ氨基乙酰丙酸(ALA)反应生成胆色素原(PBG)。4个PBG 分子形成原卟啉IX 的环状结构,叶绿素合成的第一步是由镁螯合酶插入

蛋白质酰基化修饰与生物合成代谢研究再获新进展

  近日,华东理工大学生物工程学院、生物反应器工程国家重点实验室叶邦策教授团队在蛋白质酰基化修饰与生物合成代谢研究领域再次取得重要进展,相关研究成果以“乙酰磷酸与c-di-GMP协同调节BldD活性,控制放线菌发育与抗生素合成”为题,发表于国际知名学术期刊《核酸研究》。  放线菌作为生产抗生素种类最

合成细胞培养基相关知识

合成培养基是根据天然培养基的成分,用化学物质模拟合成、人工设计、配制的培养基。它有一定的配方,是一种理想的培养基。目前合成培养基多达10多余种,有的培养基仍在不断进行改良。早期组织培养是利用天然培养基,目前合成培养基已经成为一种标准化的商品,从最初的基本培养基发展到无血清培养基、无蛋白培养基,并且还

天然培养基与合成培养基的区别在哪?

天然培养基是指来自动物体液或利用组织分离提取的一类培养基,如血浆、血清、淋巴液、鸡胚浸出液等。组织培养技术建立早期,体外培养细胞都是利用天然培养基。但是由于天然培养基制作过程复杂、批间差异大,因此逐渐为合成培养基所替代。目前广泛使用的天然培养基是血清,另外各种组织提取液、促进细胞贴壁的胶原类物质在培

合成培养基配制实验——无血清培养基的制备

实验材料ECM试剂、试剂盒蒸馏水仪器、耗材滤膜实验步骤1.  选择适宜的培养基质(ECM),先制备成贮存干液;2.  使用前,贮存干液用高纯度的蒸馏水稀释成0.1 mg/ml 浓度的使用液;3.  使用液用0.22 μm 孔径的微孔滤膜过滤除菌;4.  用吸管吸取使用液,均匀涂于消毒灭菌的细胞培养器

广州生物院在取代的二乙烯基醚合成研究中取得进展

  中国科学院广州生物医药与健康研究院蒋晟实验组在取代的二乙烯基醚合成研究中取得新进展,相关成果已于9月18日在自然出版集团旗下综合性学术期刊《科学报告》上在线发表(Sci. Rep. 5, 14231 (2015); DOI: 10.1038/srep14231)。   取代的二乙烯基醚是乙烯