科学家开发出新型纳米材料绷带

捷克科学家研发出一种新型抗菌纳米材料绷带——NANO LPPO,可用于治疗烧伤和细菌感染的皮肤伤口。该材料已经完成第一阶段实验,有待进一步临床测试验证。相关研究的结果发表在《科学报告》上。 来自捷克科学院有机化学和生物化学研究所的Dominik Rejman团队与微生物研究所的Libor Krasny团队合作开发出一种抗菌化合物——脂氧磷蛋白(LPPO)。该物质不必穿透细菌,而是直接作用于细菌表面,破坏细菌细胞膜,因此能够高效快速消灭细菌,并且尚未在实验中发现产生抗药性。 在该研究基础上,捷克利贝雷茨技术大学的David Lukas团队使用聚合物纳米纤维作为载体,开发出NANO LPPO。纳米材料会在酶的作用下被分解成无害的分子,LPPO将在分解过程中逐步释放出来。细菌产生的降解酶将显著加速该过程,伤口中的细菌越多,材料分解就越快,释放的活性物质就越多,从而能有效促进软组织的愈合和再生。小鼠模型实验已经证明NANO LP......阅读全文

科学家开发出新型纳米材料绷带

  捷克科学家研发出一种新型抗菌纳米材料绷带——NANO LPPO,可用于治疗烧伤和细菌感染的皮肤伤口。该材料已经完成第一阶段实验,有待进一步临床测试验证。相关研究的结果发表在《科学报告》上。  来自捷克科学院有机化学和生物化学研究所的Dominik Rejman团队与微生物研究所的Libor Kr

科学家开发出新型纳米材料绷带

  捷克科学家研发出一种新型抗菌纳米材料绷带——NANO LPPO,可用于治疗烧伤和细菌感染的皮肤伤口。该材料已经完成第一阶段实验,有待进一步临床测试验证。相关研究的结果发表在《科学报告》上。  来自捷克科学院有机化学和生物化学研究所的Dominik Rejman团队与微生物研究所的Libor Kr

纳米服装,真的有纳米材料吗?

越来越多的高科技已经进入到我们日常生活之中,比如纳米服装。将纳米级的微粒覆盖在纤维表面或镶嵌在纤维甚至分子间隙间,利用纳米微粒表面积大、表面能高等特点,在物质表面形成一个均匀的、厚度极薄的(肉眼观察不到、手摸感觉不到)、间隙极小(小于100nm)的‘气雾状’保护层。使得常温下尺寸远远大于100nm的

新型电子绷带加快伤口愈合

原文地址:http://news.sciencenet.cn/htmlnews/2023/2/494589.shtm 科技日报北京2月24日电 (记者张佳欣)美国西北大学的研究人员首创一种小而灵活的、可伸展的绷带,它可柔和地包裹在受伤部位,通过直接向伤口部位提供电疗来加速愈合。这是第一个能够提供

纳米材料行业发展策略

  中国纳米材料在国际上的竞争力与国际先进国家仍存在着较大差距。基础研究和应用开发研究的脱节现象也没得到很好解决,结合新产品研发的产学研创新机制,在运行和实施方面还存在一些问题,这就使中国的纳米材料产业缺乏可持续的技术创新支撑。针对我国纳米材料行业存在的问题,前瞻需提出科学的发展策略。   长远来

纳米材料的粒度分析

1. 粒度分析的概念    大部分固体材料均是由各种形状不同的颗粒构造而成,因此,细微颗粒材料的形状和大小对材料结构和性能具有重要的影响。尤其对于纳米材料,其颗粒大小和形状对材料的性能起着决定性的作用。因此,对纳米材料的颗粒大小、形状的表征和控制具有重要的意义。一般固体材料颗粒大小可以用颗粒粒度概念

纳米材料技术会议举行

  6月17~20日,第三届纳米材料与纳米技术会议在捷克举行,14个国家的200多位专家学者交流了纳米技术在建筑材料中的应用情况,来自北京化工大学、清华大学的专家也介绍了相关研究成果。   捷克奥斯特拉瓦纳米技术研究中心开发的纳米复合材料在新型建材中的应用引起了广泛关注。他们采用纳米级的二氧化钛对

纳米材料的粒度分析

    大部分固体材料均是由各种形状不同的颗粒构造而成,因此,细微颗粒材料的形状和大小对材料结构和性能具有重要的影响。尤其对于纳米材料,其颗粒大小和形状对材料的性能起着决定性的作用。因此,对纳米材料的颗粒大小、形状的表征和控制具有重要的意义。一般固体材料颗粒大小可以用颗粒粒度概念来描述。但由于颗粒形

硅纳米管:自组生长新纳米材料

  湖南大学博士生导师唐元洪教授课题组率先合成自组生长的硅纳米管,标志着我国在纳米材料研究方面取得重大突破。   自组生长的硅纳米管是在一定条件下由一个个原子自己搭建生成、内部排列有序的纳米管,它完全可以体现硅纳米管的真实特性,同时具备碳纳米材料和硅纳米线材料的性能,在传感器、晶体管、光电器件等方

“智能绷带”技术有望改变护理现状

据新一期《自然·材料》报道,美国南加州大学凯克医学院和加州理工学院联合团队正在开发一系列尖端技术,有望彻底改变护理领域,其中包括可自动感知伤口内部变化并作出反应的“智能绷带”。这种高科技敷料经过数次优化,现已能持续提供有关伤口愈合和潜在并发症的数据,并可实时提供药物及其他治疗。该技术其实属于一种新型

自行注射绷带可防止出血

  图片来源:Texas A&M University   弹片穿透性损伤是战场上需要克服的重要障碍,处理不好就会造成死亡。考虑到大出血带来的高死亡率,目前急需可以自行快速注射的材料来防止大量出血造成的死亡。   来自美国得州农业大学仿生纳米材料和组织工程实验室的研究人员通过使用一种制备点心常用

“智能绷带”技术有望改变护理现状

“智能绷带”可贴合在皮肤上监测伤情。图片来源:加州理工学院科技日报北京6月23日电 (记者张梦然)据新一期《自然·材料》报道,美国南加州大学凯克医学院和加州理工学院联合团队正在开发一系列尖端技术,有望彻底改变护理领域,其中包括可自动感知伤口内部变化并作出反应的“智能绷带”。这种高科技敷料经过数次优化

智能绷带促伤口无痕修复

  美国斯坦福大学研究人员24日在《自然·生物技术》发表论文称,他们已开发出一种无线智能绷带,通过监测伤口愈合过程并治疗伤口,以加速受伤组织修复。研究人员说,这种绷带能促进伤口更快闭合,增加流向受伤组织的新血流,并通过显著减少疤痕形成来促进皮肤恢复。  智能绷带由无线电路组成,使用阻抗/温度传感器来

AFM纳米材料与粉体材料的分析

 纳米材料与粉体材料的分析在材料科学中,无论无机材料或有机材料,在研究中都有要研究文献,材料是晶态还是非晶态。分子或原子的存在状态中间化物及各种相的变化,以便找出结构与性质之间的规律。在这些研究中AFM 可以使研究者,从分子或原子水平直接观察晶体或非晶体的形貌、缺陷、空位能、聚集能及各种力的相互作用

纳米材料与纳米技术会议在捷克举行

  6月17~20日,第三届纳米材料与纳米技术会议在捷克举行,14个国家的200多位专家学者交流了纳米技术在建筑材料中的应用情况,来自北京化工大学、清华大学的专家也介绍了相关研究成果。   捷克奥斯特拉瓦纳米技术研究中心开发的纳米复合材料在新型建材中的应用引起了广泛关注。他们采用纳米级的二氧化钛对

纳米材料拉力试验机

一、中文版试验软件一套(测控系统可进行拉伸、压缩、弯曲、剥离、剪切、撕裂、穿刺、顶破等试验,可根据客户产品要求按GB、ISO、ASTM、JIS、EN等标准编制,能自动求取大试验力,断裂力,屈服力,抗拉强度,抗压强度,弯曲强度,弹性模量,伸长率,定伸长应力,定应力伸长等参数);1、PC接口及数据连接线

新型纳米材料项目落户龙口

  从山东省商务厅获悉,烟台华大纳米材料有限公司近日举行奠基仪式,标志着全球规模最大的新型纳米材料项目正式落户龙口高新区。   该项目总投资达9000万美元,计划2011年12月竣工投产。项目达产后年可生产各种新型纳米材料6万吨。投资方之一的香港凯美科技有限公司拥有目前全球惟一的纳米级替代纺前着色

纳米新材料“钯蓝”问世

  我国科学家制备出一种蓝色的新型钯纳米材料,它不仅具有很高的催化活性,而且或可成为癌症光热疗的“希望之星”。   日前,《自然—纳米技术》刊登了厦门大学化学化工学院郑南峰教授课题组的研究成果,题为“具等离子体光学和催化性能的钯纳米薄片”。   钯是一种稀贵金属,在化学中主要用做催

欧盟通过纳米材料定义

  欧盟委员会10月18日通过纳米材料的定义,根据这一定义,纳米材料的基本组成颗粒大小应在1纳米至100纳米之间。  这一定义是:纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒

纳米复合材料的背景

复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,如今发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。在纳

纳米材料的粒度分析(二)

3、粒度分析的种类和适用范围 材料颗粒度分析的方法以有很多,现已研制并生产了200多种基于各种工作原理的分析测量装置,并且不断有新的颗粒粒度测量方法和测量仪器研制成功。虽然粒度分析的方法多种多样,基本上可归纳为以下几中方法。传统的颗粒测量方法有筛分法、显微镜法、沉降法、电感应法等,近年来发展的方法有

纳米材料的粒度分析(一)

1.1前言1.粒度分析的概念 大部分固体材料均是由各种形状不同的颗粒构造而成,因此,细微颗粒材料的形状和大小对材料结构和性能具有重要的影响。尤其对于纳米材料,其颗粒大小和形状对材料的性能起着决定性的作用。因此,对纳米材料的颗粒大小、形状的表征和控制具有重要的意义。一般固体材料颗粒大小可以用颗粒粒度概

纳米材料的表征是什么

从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃)。即100纳米以下,因此定义:颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米金属材料是20世纪80年代中期研制成功的,

纳米材料的粒度分析(三)

①    射法(static light scattering)在静态光散射粒度分析法中,当颗粒粒度大光波波长时,克用夫朗和费衍射测量前向小角区域的散射光强度分布来确定颗粒粒度。当粒子尺寸与光波波长相近时,要用米散射理论进行修正,并利用光谱分析法。基于这两种理论原理的激光粒度分析已经应用于生产实际中

硅纳米负极是什么材料

研究人员发现硅纳米作为负极理论容量可以达到4200,而目前的石墨负极材料理论也就372,行内很多厂家想用纳米硅作为负极材料,问题是硅充电时体积膨胀好几倍,有出现粉化现象,基本证明纳米硅不能单独作为负极材料,现在比较流行的是硅碳复合材料,缓解硅的膨胀,我们咸阳六元碳晶公司也是初入此行,也想研究开发硅碳

关于锂电池负极材料纳米材料的简介

  纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小

关于锂电池负极材料纳米材料的介绍

  纳米材料是指在三维空间中至少有一维处于纳米尺寸(1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~1000个原子紧密排列在一起的尺度。  "纳米复合聚氨酯合成革材料的功能化"和"纳米材料在真空绝热板材中的应用"2项合作项目取得较大进展。具有负离子释放功能且释放量可达2000以上

南非用螃蟹壳制造新型绷带

  南非科技与工业研究院(CSIR)的科学家正在研究螃蟹壳的抗菌性能,期望能找到一种基于壳聚糖的聚合物溶液配方,通过静电纺丝的方法制备出壳聚糖纳米纤维膜。由于具有特殊的性能,壳聚糖纳米纤维膜特别适合用作创伤治疗材料。  CSIR研究员巴伦西亚·雅各布斯说,壳聚糖具有低过敏原性和天然抗菌特性

科研人员研制出“智能绷带”

  电路板通常很坚硬,但美国和中国科研人员合作开发出一种轻薄、柔软的电路板,并概念验证性地制成“智能绷带”,能贴在皮肤上监测多种生理信号。  近日发表在英国《自然—电子学》杂志上的封面文章显示,这种“智能绷带”由4层相互连通的薄柔电路板堆叠而成,整体的大小及厚度与1元硬币相仿。  研究人员说,电路板

能发光的绷带可检测是否感染

  最近,Bath大学的研究人员发明了一种可以发光的绷带(见下图),当绷带接触到有害的细菌时就会发出光亮提醒医务人员病人可能出现感染的风险。而人的身体在抵御细菌时会释放出毒素,而这种毒素可以和绷带发生反应,刺穿保存在绷带中的燃料胶囊薄膜。而燃料在溶解于凝胶的时候就会发出绿色的光线。  根据研究人员介