基因芯片技术的原理

基因芯片又称DNA芯片(DNA chip )或DNA微阵列(DNA microarray)。其原理是采用光导原位合成或显微印刷等方法将大量特定序列的探针分子密集、有序地固定于经过相应处理的硅片、玻片、硝酸纤维素膜等载体上,然后加入标记的待测样品,进行多元杂交,通过杂交信号的强弱及分布,来分析目的分子的有无、数量及序列,从而获得受检样品的遗传信息。其工作原理与经典的核酸分子杂交如Southern和Northern印迹杂交一致,都是应用已知核酸序列与互补的靶序列杂交,根据杂交信号进行定性与定量分析。经典杂交方法固定的是靶序列,而基因芯片技术固定的是已知探针,因此基因芯片可被理解为一种反向杂交。基因芯片能够同时平行分析数万个基因,进行高通量筛选与检测分析,解决了传统核酸印迹杂交技术操作复杂、自动化程度低、检测目的分子数量少等不足。根据所用探针类型,基因芯片可分为cDNA ( comp lement DNA)芯片和寡核苷酸芯片;根据......阅读全文

基因芯片技术的原理

  基因芯片又称DNA芯片(DNA chip )或DNA微阵列(DNA microarray)。其原理是采用光导原位合成或显微印刷等方法将大量特定序列的探针分子密集、有序地固定于经过相应处理的硅片、玻片、硝酸纤维素膜等载体上,然后加入标记的待测样品,进行多元杂交,通过杂交信号的强弱及分布,来分析目的

基因芯片的技术特点和原理

DNA芯片又叫做基因芯片(gene chip)或基因微阵列(microarray),寡核酸芯片,或DNA微阵列,它是通过微阵列技术将高密度DNA片段阵列以一定的排列方式使其附着在玻璃、尼龙等材料上面。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。

基因芯片的原理

基因芯片(gene chip)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,可以用图11-5-1来说明。在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置

基因芯片-原理

基因芯片(gene chip)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,可以基因芯片的测序原理用图11-5-1来说明。在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与

基因芯片的测序原理

基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置,获得一组序列完全互补的探针序

基因芯片的测序原理

基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置,获得一组序列完全互补的探针序

基因芯片的检测原理

杂交信号的检测是DNA芯片技术中的重要组成部分。以往的研究中已形成许多种探测分子杂交的方法,如荧光显微镜、隐逝波传感器、光散射表面共振、电化传感器、化学发光、荧光各向异性等等,但并非每种方法都适用于DNA芯片。由于DNA芯片本身的结构及性质,需要确定杂交信号在芯片上的位置,尤其是大规模DNA芯片由于

基因芯片检测原理

杂交信号的检测是DNA芯片技术中的重要组成部分。以往的研究中已形成许多种探测分子杂交的方法,如荧光显微镜、隐逝波传感器、光散射表面共振、电化传感器、化学发光、荧光各向异性等等,但并非每种方法都适用于DNA芯片。由于DNA芯片本身的结构及性质,需要确定杂交信号在芯片上的位置,尤其是大规模DNA芯片由于

基因芯片技术的简介

  随着人类基因组( human genome p roject, HGP) 、多种模式生物(model organism)和部分病原体基因组测序的完成,基因序列数据以前所未有的速度不断增长。传统实验方法已无法系统地获得和诠释日益庞大的基因序列信息,研究者们迫切需要一种新的手段,以便大规模、高通量地

基因芯片相关技术

样品的准备及杂交检测目前,由于灵敏度所限,多数方法需要在标记和分析前对样品进行适当程序的扩增,不过也有不少人试图绕过这一问题,如 Mosaic Technologies 公司引入的固相 PCR 方法,引物特异性强,无交叉污染并且省去了液相处理的烦琐; Lynx Therapeutics 公司引入

基因芯片(gene-chip)的原理

基因芯片(gene chip)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通

基因芯片检测原理(一)

基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH)。即任何线状的单链DNA或RNA序列均可被分解为一个序列固定、错落而重叠的寡核苷酸,又称亚序列(subsequence)。例如可把寡核苷酸序列TTAGCTCATATG分解成5个8 nt亚

基因芯片检测原理(二)

1.荧光标记杂交信号的检测方法使用荧光标记物的研究者最多,因而相应的探测方法也就最多、最成熟。由于荧光显微镜可以选择性地激发和探测样品中的混合荧光标记物,并具有很好的空间分辨率和热分辨率,特别是当荧光显微镜中使用了共焦激光扫描时,分辨能力在实际应用中可接近由数值孔径和光波长决定的空间分辨率,而在传统

基因芯片技术的主要应用

  1998 年底美国科学促进会将基因芯片技术列为 1998 年度自然科学领域十大进展之一,足见其在科学史上的意义。现在,基因芯片这一时代的宠儿已被应用到生物科学众多的领域之中。它以其可同时、快速、准确地分析数以千计基因组信息的本领而显示出了巨大的威力。这些应用主要包括基因表达检测、突变检测、基因组

基因芯片相关技术介绍

样品的准备及杂交检测目前,由于灵敏度所限,多数方法需要在标记和分析前对样品进行适当程序的扩增,不过也有不少人试图绕过这一问题,如 Mosaic Technologies 公司引入的固相 PCR 方法,引物特异性强,无交叉污染并且省去了液相处理的烦琐; Lynx Therapeutics 公司引入的大

生物信息学技术:基因芯片实验原理与方法

本实验的目的是学会cDNA芯片的使用方法。了解各种基因芯片的基本原理和优缺点。基因芯片这一技术方法在1991年的Science杂志上被提出,其高通量、并行检测的特点适应了分析人类基因组计划所提供的海量的基因序列信息的需要,可以说,人类基因组计划是基因芯片技术发展的原因,而对深人研究基因突变和基因表达

基因芯片实验原理与方法

本实验的目的是学会cDNA芯片的使用方法。了解各种基因芯片的基本原理和优缺点。基因芯片这一技术方法在1991年的Science杂志上被首次提出,其高通量、并行检测的特点适应了分析人类基因组计划所提供的海量的基因序列信息的需要,可以说,人类基因组计划是基因芯片技术发展的原因,而对深人研究基因突变和基因

原位合成的基因芯片制备技术

生物芯片制备中材料的固定方式主要包括原位合成法和点样法两种,点样法又分为接触式点样法和非接触式点样法。原位合成法主要用于基因芯片的制备,点样法可用于基因芯片和蛋白质芯片的制备。细胞芯片主要是通过细胞本身的贴壁生长来完成固定。组织芯片通过一些黏性溶剂(如石蜡)使组织切片固定在载体上。某些微流体芯片不需

基因芯片技术的应用实验研究

包括基因表达检测、寻找新基因、杂交测序、基因突变和多态性分析以及基因文库作图以及等方面。1、基因表达检测。人类基因组编码大约10万个不同的基因,仅掌握基因序列信息资料,要理解其基因功能是远远不够的,因此,具有监测大量mRNA(信使RNA,可简单理解为基因表达的中介物)的实验工具很重要。有关对芯片技术

基因芯片技术的应用农业发展

基因芯片技术可以用来筛选农作物的基因突变,并寻找高产量、抗病虫、抗干旱、抗冷冻的相关基因,也可以用于基因扫描及基因文库作图、商品检验检疫等领域。

基因芯片技术知识概要

生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP(human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀

基因芯片技术与检验医学

  什么是基因芯片?基因芯片就是利用点样技术、现代探针固相原位合成技术、照相平板印刷技术等微电子技术在有限的空间内,有序的集成一系列的可寻址识别的基因片段,以用于高通量、高速度、低成本的一种分子生物学工具。按照芯片的制作原理,基因芯片可以分为很多类,但目前真正成熟的,得以广泛应用的仍只有使用点样或原

基因芯片实验原理与方法(一)

一、目的本实验的目的是学会cDNA芯片的使用方法。了解各种基因芯片的基本原理和优缺点。基因芯片这一技术方法在1991年的Science杂志上被首次提出,其高通量、并行检测的特点适应了分析人类基因组计划所提供的海量的基因序列信息的需要,可以说,人类基因组计划是基因芯片技术发展的原因,而对深人研究基因突

基因芯片技术在研究领域的应用

包括基因表达检测、寻找新基因、杂交测序、基因突变和多态性分析以及基因文库作图以及等方面。1、基因表达检测。人类基因组编码大约10万个不同的基因,仅掌握基因序列信息资料,要理解其基因功能是远远不够的,因此,具有监测大量mRNA(信使RNA,可简单理解为基因表达的中介物)的实验工具很重要。有关对芯片技术

基因芯片分析系统的技术指标

  1、扫描分辨率较高,如小于1μm。2、自动扫描获取数据,自动校正系统,扫描自动化程度高,步骤较简化。3、扫描速度较快,单位芯片的扫描时间较短。3、扫描效率高,如一次完成多个样本扫描。4、扫描自动化程度较高,人工操作步骤较少。5、扫描的质控措施更可靠,Call rate 必须达到99%以上。6、扫

基因芯片技术的标准操作规程

  基因芯片的制备 以玻璃片或硅片为载体,采用原位合成和微矩阵的方法将寡核苷酸片段或cDNA作为探针按顺序排列在载体上。  荧光标记 在基因组DNA扩增过程中,将带有Cy3或Cy5荧光素的dUTP或dCTP加入到新合成的DNA链,使新合成的DNA链带有荧光标识。  杂交和洗涤 使带有荧光标记gDNA

基因芯片技术在司法领域的应用

基因芯片还可用于司法,现阶段可以通过DNA指纹对比来鉴定罪犯,未来可以建立全国甚至全世界的DNA指纹库,到那时以直接在犯罪现场对可能是疑犯留下来的头发、唾液、血液、精液等进行分析,并立刻与DNA罪犯指纹库系统存储的DNA“指纹”进行比较,以尽快、准确的破案。目前,科学家正着手于将生物芯片技术应用于亲

基因芯片技术的应用司法鉴定

基因芯片还可用于司法,现阶段可以通过DNA指纹对比来鉴定罪犯,未来可以建立全国甚至全世界的DNA指纹库,到那时以直接在犯罪现场对可能是疑犯留下来的头发、唾液、血液、精液等进行分析,并立刻与DNA罪犯指纹库系统存储的DNA“指纹”进行比较,以尽快、准确的破案。目前,科学家正着手于将生物芯片技术应用于亲

基因芯片的测序原理是杂交测序方法

 基因芯片的测序原理是杂交测序方法        随着人类基因组(测序)计划( Human genome project )的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组序列得以测定,基因序列数据正在以前所未有的速度迅速增长。然而 , 怎样去研究如此众多基因在生命过程中所

基因芯片技术在疟疾研究中的应用

随着人类基因组( human genome p roject, HGP) 、多种模式生物(model organism)和部分病原体基因组测序的完成,基因序列数据以前所未有的速度不断增长。传统实验方法已无法系统地获得和诠释日益庞大的基因序列信息,研究者们迫切需要一种新的手段,以便大规模、高通