实验室光学仪器多晶X射线衍射的方法

一、粉末法粉末法又称粉晶法。在劳厄发现单晶体对X射线衍射后不久,德国的德拜和谢乐(Debye & Scherrer)、美国的胡尔几乎同时发现了粉末法。它采用波长一定的X射线,样品为研磨成粉末状的细小晶体颗粒的集合体,通常将它们胶合,制成直径小于0.5毫米的细圆柱,安装在特制的粉末照相机的中心。长条形的底片在照相机中以样品柱为轴心围成一个圆筒。当一束平行的X射线照射到样品柱上时,便产生一系列的衍射圆锥(即连接成圆锥形的衍射线),从而使底片感光,在底片上记录下一系列呈对称排列的弧线。这样的底片称为粉末图或德拜图(Debye crystallo gram)。根据X射线的波长、底片圆筒的直径以及粉末图上各对弧线的间距和黑度,可以计算出晶体中相应的面网间距d和衍射强度。粉末法也可采用平板样品,而用辐射探测器来记录衍射线的方向和强度,此即衍射仪法。粉末法在地质学中主要用来鉴定矿物。此外,用粉末法还可以精确测定样品的晶胞参数。粉末法所......阅读全文

实验室光学仪器X射线衍射仪的常见问题分析

 一、什么是标准半峰宽度,如何得到?所谓的标准半峰宽应该是指仪器本身的宽化因子,和实验时使用的狭缝条件关系最大,想得到它并不难。比如在相同的测量条件下,把 Si 标样放到仪器上测量 Si 的各个衍射峰的 Kα1 峰的半高宽,就是所谓的标准了。当你需要测量一系列非标样 Si 粉时,就把标样 Si 的

实验室光学仪器X射线衍射仪的测量方法的误差及消除

1)Debye—Scherrer法的测量误差及消除主要误差:样品偏离相机的转轴,相机直径不准确,照相底片显影、定影过程中的伸缩或底片直径偏离相机直径,X射线的轴向发射以及指数焦点光源或均匀焦点光源所产生的不同吸收等。消除误差:①提高仪器的加工精度,谨慎操作和精确计算;②利用误差与θ角的函数关系进行图

实验室光学仪器X射线衍射仪晶粒大小计算

一、关于XRD图谱 1)衍射线宽化的原因 用衍射仪测定衍射峰的宽化包括仪器宽化、试样本身引起的宽化。试样引起的宽化又包括晶块尺寸大小的影响、不均匀应变(微观应变)和堆积层错(在衍射峰的高角一侧引起长的尾巴)。后二个因素是由于试样晶体结构的不完整所造成的。2)半高宽、样品宽化和仪器宽化样品的衍射峰加宽

实验室光学仪器X射线衍射仪的XRD制样样品要求

X射线衍射实验的准确性和实验得到的信息质量好与坏与样品的制备有很大关系,因此在做XRD衍射实验时应合理处理样品和制备样品。Xrd可以测量块状和粉末状的样品,对于不同的样品尺寸和样品性质有不同的要求。制备时应考虑晶粒大小、试样的大小及厚度、择优取向、加工应变和表面平整度。1)块状样品的要求及制备a.对

中子衍射方法和X射线衍射方法的区别

中子衍射和X射线衍射十分相似,其不同之处在于:1、X射线是与电子相互作用,因而它在原子上的散射强度与原子序数成正比,而中子是与原子核相互作用,它在不同原子核上的散射强度不是随值单调变化的函数,这样,中子就特别适合于确定点阵中轻元素的位置(X射线灵敏度不足)和值邻近元素的位置(X 射线不易分辨);2、

用X射线衍射精确表征硅酸三钙多晶型

在1 500℃条件下,通过掺杂质量分数为0、0.6%及1.5%的MgO制备了T1、T3及M3型硅酸三钙(C3S)。使用不同分辨率的X射线衍射仪对样品进行分析。结果表明:不同晶型的C3S指纹区X射线粉末衍射特征峰存在明显差异,衍射峰的不同可以用于判定C3S晶型;当X射线衍射仪分辨率较低(仪器半高宽

X射线衍射分析对单晶取向和多晶织构测定

  单晶取向的测定就是找出晶体样品中晶体学取向与样品外坐标系的位向关系。虽然可以用光学方法等物理方法确定 单晶取向,但X 衍射法不仅可以精确地单晶定向,同时还能得到晶体内部微观结构的信息。一般用劳埃法 单晶定向,其根据是底片上劳埃斑点转换的极射赤面投影与样品外坐标轴的极射赤面投影之间的位置关系。透射

实验室光学仪器X射线衍射仪的样品不能精修的原因

选择精修命令后,有时会出现“Unable to Graft hkl’s to peaks”的提示。表明不能进行精修。其原因有两种:一是有些拟合的峰没有对应的(hkl)标记。例如,测量铁素体的5条线,但检索PDF卡片只有前3条线,3条衍射线不能进行精修。二是衍射峰位相对于“选定结构 (标准卡片)”的峰

多晶体衍射仪的X射线发生器相关介绍

  X射线发生器由X射线管、高压发生器、管压和管流稳定电路以及各种保护电路等部分组成。  现代衍射用的X射线管都属于热电子管,有密封式和转靶式两种。前者最大的功率在2.5KW以内,视靶材料的不同而异;后者是为获得高强度X射线而设计的,一般功率在10KW以上,目前常用的有9KW、12KW和18KW几种

实验室光学仪器X射线衍射仪的样品的结构精修过程介绍

样品的结构精修是以某一指定结构为初始值进行修正的。具有步骤如下:①物相检索,对指定物相的“初始结构”。②扣背景和Kα2、对图谱作平滑处理。③物相衍射峰的拟合。如果样品中存在几个物相,则全部衍射峰都要参与拟合。④选择菜单“Options-Cell Refinement”命令,开始精修。

X射线衍射仪

特征X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。X射线衍射仪的英文名称是X-ra

X射线衍射简介

1912年,劳厄等人根据理论预见,证实了晶体材料中相距几十到几百皮米(pm)的原子是周期性排列的;这个周期排列的原子结构可以成为X射线衍射的“衍射光栅”;X射线具有波动特性, 是波长为几十到几百皮米的电磁波,并具有衍射的能力。  这一实验成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,

X射线衍射分析

XRD物相分析是基于多晶样品对X射线的衍射效应,对样品中各组分的存在形态进行分析。测定结晶情况,晶相,晶体结构及成键状态等等。 可以确定各种晶态组分的结构和含量。灵敏度较低,一般只能测定样品中含量在1%以上的物相,同时,定量测定的准确度也不高,一般在1%的数量级。XRD物相分析所需样品量大(0.1g

X射线衍射分析

建立在X射线与晶体物质相遇时能发生衍射现象的基础上的一种分析方法。应用这种方法可进行物相定性分析和定量分析、宏观和微观应力分析  。① 物相定性分析:每种晶体物相都有一定的衍射花样,故可根据不同的衍射花样鉴别出相应的物相类别。由于这种方法能确定被测物相的组成,在机械工程材料特别是金属材料的研究中应用

X射线衍射仪

产品型号: X'Pert PRO生产厂家:荷兰帕纳科公司PANalytical B.V.(原飞利浦分析仪器)仪器介绍:X'Pert PRO X射线衍射仪采用陶瓷χ光管、DOPS直接光学定位传感器精确定位和最优化的控制台及新型窗口软件。采用模块化设计,可针对不同的要求采用最优的光学系统

X射线衍射的jianji

  物质结构的分析尽管可以采用中子衍射、电子衍射、红外光谱、穆斯堡尔谱等方法,但是X射线衍射是最有效的、应用最广泛的手段,而且X射线衍射是人类用来研究物质微观结构的第一种方法。X射线衍射的应用范围非常广泛,现已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中,成为一种重要的实验方法和结构分

X射线衍射的特点

波长短,穿透力强,可进行无损探伤检测、透视、晶体结构表征、微观应力测试等应用!

X射线衍射的特点

波长短,穿透力强,可进行无损探伤检测、透视、晶体结构表征、微观应力测试等应用!

X射线衍射的原理

当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。

X射线衍射的特点

波长短,穿透力强,可进行无损探伤检测、透视、晶体结构表征、微观应力测试等应用!

X射线衍射的原理

当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。布拉格方程1913年英国物理学家

X射线衍射的应用

  X 射线衍射技术已经成为最基本、最重要的一种结构测试手段,其主要应用主要有以下几个方面:  物相分析  物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中

X射线衍射仪的使用方法

(a)装填样品按下衍射仪面板上的Door按钮,指示灯闪烁、蜂鸣器发出报警声,缓慢的向右拉开衍射仪保护门。将样品表面朝上安装到样品台上,此时注意尽可能的将样品置于载物台的中心位置。向左轻拉右侧门,两门自动吸住后报警声停止。(b)设置仪器参数点击桌面Right Measurement System图标,

X射线衍射法的原理及方法

X射线衍射法是一种晶体结构的分析方法,而不是直接研究试样内含有元素的种类及含量的方法。当一束单色X射线入射到晶体时,由于晶体由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射。晶体衍射X射线的方向,与构

多晶体衍射为什么要用单色x射线做辐射源

从布拉格公式可以看出,2d sinθ=λ,波长值波动范围越小。测量的晶面间距d值就准确。多色x射线是由波长一定范围的多种波长的光波组成。

X射线衍射及应用

1895年伦琴发现X射线.德国物理学家劳厄于1912年发现了X射线衍射现象,并导出了劳厄晶体衍射公式.紧接着,英国物理学家布拉格父子又将此衍射关系用简单的布拉格定律表示,使之易于接受.到本世纪四、五十年代,X射线衍射的原理、方法及在各方面的应用虽已建立,其应用范围已遍及物理、化学、地质学、生命科学,

X射线衍射仪原理

x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物

X射线衍射仪构造

X射线衍射仪的形式多种多样,用途各异,但其基本构成很相似,为X射线衍射仪的基本构造原理图,主要部件包括4部分。  (1)高稳定度X射线源  提供测量所需的X射线,改变X射线管阳极靶材质可改变X射线的波长,调节阳极电压可控制X射线源的强度。  (2)样品及样品位置取向的调整机构系统  样品须是单晶、粉

X射线衍射技术简介

物质结构的分析尽管可以采用中子衍射、电子衍射、红外光谱、穆斯堡尔谱等方法,但是X射线衍射是最有效的、应用最广泛的手段,而且X射线衍射是人类用来研究物质微观结构的第一种方法。X射线衍射的应用范围非常广泛,现已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中,成为一种重要的实验方法和结构分析手

X射线衍射仪法

X射线主要被原子中紧束缚的外层电子所散射。X射线的散射可以是相干的(波长不变)或非相干的(波长变)。相干散射的光子可以再进行相互干涉并依次产生一些衍射现象。衍射出现的角度(θ)可以与晶体点阵中原子面间距(d)联系起来,因此X射线衍射花样可以研究宝玉石的晶体结构和进行物相鉴定。一、X射线的产生及其性质