原子荧光和原子吸收的区别
原子吸收分光光度法是基于基态原子对共振光的吸收:而原子荧光光度是处于激发态原子向基态跃迁,并以光辐射形式失去能量而回到基态。而且这个激发态是基态原子对共振光吸收而跃迁得来的。因此,原子荧光包含了两个过程:吸收和发射。色散系统:较之原子吸收荧光谱线更少,光谱干扰也少,所以可以用低分辨力的分光系统甚至于非色散系统。光学排列:对于原子吸收,检测器必须观察初级光源(HCL),因为需要测量的是原子对光源特征辐射的吸收;而原子荧光的光学排列与原子吸收不同,往往要避开初级光源的直接射入,而以一定角度去观察原子化器,测定其向2pi立体角辐射的荧光。在有的资料上可以看到right angle view(直角观察)和front view(正面观察)这样的光学排列。大多数AFS分析的元素,原子吸收都很难做,所以有人称其为原子吸收的好朋友,原子吸收的补充。原子荧光和原子吸收都是光谱,原理稍微有些不同。原子荧光的特长是测量As,Se,Hg等一些过度元素和......阅读全文
原子吸收和原子荧光的区别
火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素
原子吸收和原子荧光的区别
火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素
原子吸收和原子荧光的区别
原子吸收和原子荧光的区别原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法. 气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约(10的负八次方)秒,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子
原子吸收和原子荧光的区别
原子吸收和原子荧光的区别原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法. 气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约(10的负八次方)秒,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子
原子吸收和原子荧光的区别
火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素
原子吸收和原子荧光的区别
火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素
原子吸收和原子荧光的区别
火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素
原子吸收和原子荧光的区别
原子吸收和原子荧光的区别原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法. 气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约(10的负八次方)秒,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子
原子吸收和原子荧光的区别
火焰原子吸收属于吸收光谱,氢化法原子荧光属于发射光谱。两者原理不同,可检测元素不同。不过需要注意近些年发展的火焰原子荧光仪器。火焰原子荧光也可以检测金、银、铜等元素。并且在金元素的检测上,灵敏度和稳定性优于原子吸收。例如市面上的矿山测金仪就属于火焰原子荧光。不过原子吸收应用范围更广泛,因为可检测元素
原子吸收和原子荧光的区别
异:原子荧光法是利用基态原子吸收辐射至高能态,再产生的荧光来判断元素组成,原子吸收法是利用原子吸收特定频率的光辐射判断元素组成。同:都是利用原子的光谱判断。原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不
原子荧光,原子吸收和原子发射的区别和特点
原子在受到热或电的激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱叫做原子发射光谱,而根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法称为原子发射光谱法。ICP-AES的特点是可以进行多元素检测,选择性高,检出限低,准确度高。 原子荧光光谱是基于基态原子吸收特定
原子吸收和原子荧光灯的区别
原子吸收和原子荧光灯的区别? 1. 一般原子吸收的灯电流比较低,一般情况工作电流不会大于10毫安。原子荧光的灯电流较大 2. 原吸,要求发射线光谱带线宽应远小于吸收线带宽,一般为0.0005-0.002nm,越狭越好. 荧光,并不要求发射带线宽越锐越好,而是要求发射线带宽等于或小于特征波长线宽即可,
原子吸收,原子荧光以及原子发射的区别和联系
首先,共同点就是都属于原子光谱类的仪器。利用原理可以检测物质的组成。 不同点是首先是原理不同:发射光谱是原子在受到热或电的激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱;原子荧光光谱是基于基态原子吸收特定波长光辐射的能量而被激发至高能态,受激原子在去激发过程中发射出的一定波长的光辐射,根
原子吸收,原子荧光以及原子发射的区别和联系
原子荧光光谱:原子荧光光谱是基于基态原子吸收特定波长光辐射的能量而被激发至高能态,受激原子在去激发过程中发射出的一定波长的光辐射,根据这一原理制成的可以检测元素含量的仪器叫原子荧光光谱仪(光度计),比如SK-2003A,线性宽度大于三个数量级,重复性小于百分之0.6%。原子发射光谱:原子在受到热或电
原子荧光和原子吸收的区别
原子荧光和原子吸收都是光谱,原理稍微有些不同。原子荧光的特长是测量As,Se,Hg等一些过度元素和特殊的金属元素。原子吸收分火焰和石墨炉两种,主要测量重金属元素,石墨炉原子吸收测量重金属元素也可以达到ug/L级别。原子荧光和原子吸收在实验室里没有ICPMS的情况下作为互补,可以测量大部分金属元素和过
原子荧光和原子吸收的区别
原子吸收分光光度法是基于基态原子对共振光的吸收:而原子荧光光度是处于激发态原子向基态跃迁,并以光辐射形式失去能量而回到基态。而且这个激发态是基态原子对共振光吸收而跃迁得来的。因此,原子荧光包含了两个过程:吸收和发射。色散系统:较之原子吸收荧光谱线更少,光谱干扰也少,所以可以用低分辨力的分光系统甚至于
如何正确区别原子荧光和原子吸收?
原子吸收分光光度法是基于基态原子对共振光的吸收:而原子荧光光度是处于激发态原子向基态跃迁,并以光辐射形式失去能量而回到基态。而且这个激发态是基态原子对共振光吸收而跃迁得来的。因此,原子荧光包含了两个过程:吸收和发射。色散系统:较之原子吸收荧光谱线更少,光谱干扰也少,所以可以用低分辨力的分光系统甚至于
原子荧光分光光度计和原子吸收有哪些区别
原子吸收分光光度法是基于基态原子对共振光的吸收:而原子荧光光度是处于激发态原子向基态跃迁,并以光辐射形式失去能量而回到基态。 而且这个激发态是基态原子对共振光吸收而跃迁得来的。因此,原子荧光包含了两个过程:吸收和发射。 色散系统:较之原子吸收荧光谱线更少,光谱干扰也少,所以可以用低分辨力的分
原子荧光光度计和原子吸收光度计有什么区别
最重要的两点区别:1、测定指标不同:原子荧光光度计测定的是荧光强度;原子吸收光度计测定的是吸光度;2、灵敏度:原子荧光光度计测定结果的灵敏度比原子吸收分光光度法高的多。
原子吸收和原子发射的本质区别
原子吸收和原子发射的谱线是一致的。原子吸收是吸收谱线,电磁波穿透原子蒸汽时,特定波长被吸收改变自身电子能级,然后向各方向发射,原方向的该波长电磁波就减少了。原子发射是受激发射谱线,受热或电激发,原子的电子激发到高能轨道,然后放出特定波长的电磁波回到低能轨道,通常是基态,可测定所释放的电磁波频率。
原子荧光光谱和icpms的区别
ICP-MS全称是电感藕合等离子体质谱,它是一种将ICP技术和质谱结合在一起的分析仪器。ICP利用在电感线圈上施加的强大功率的高频射频信号在线圈内部形成高温等离子体,并通过气体的推动,保证了等离子体的平衡和持续电离,在ICP-MS中,ICP起到离子源的作用,高温的等离子体使大多数样品中的元素都电离出
原子荧光光谱和icpms的区别
ICP-MS全称是电感藕合等离子体质谱,它是一种将ICP技术和质谱结合在一起的分析仪器。ICP利用在电感线圈上施加的强大功率的高频射频信号在线圈内部形成高温等离子体,并通过气体的推动,保证了等离子体的平衡和持续电离,在ICP-MS中,ICP起到离子源的作用,高温的等离子体使大多数样品中的元素都电离出
原子吸收光谱仪和原子荧光光谱仪的区别
原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。原子吸收光谱仪是从光源辐
原子吸收光谱仪和原子荧光光谱仪的区别
原子吸收光谱法是根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。 其优点与不足: 检出限低,灵敏度高。火焰原子吸收法的检出限可达到ppb级,石墨炉原子吸收法的检出限可达到10-10-10-14g。 分析精度好。火焰原子吸收法测定中等和高含量元素的相对标
原子荧光光谱仪和原子吸收光谱仪的区别
1、光路不同:原子吸收光源、原子化器和检测器在一条光路上;原子荧光为垂直光路。 2、原理不同:原子吸收利用原子的特征吸收光谱;原子荧光则利用原子的激发-跃迁光谱 (荧光)。 3、灵敏度不同:对于原子吸收,增加光源强度同时会增加背景吸收,而原子荧光信号强度 与激发光源强度成正比,故灵敏度可以
原子荧光光谱仪和原子吸收光谱仪的区别
原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。原子吸收光谱仪是从光源辐
原子荧光光谱仪和原子吸收光谱仪的区别
1、光路不同:原子吸收光源、原子化器和检测器在一条光路上;原子荧光为垂直光路。2、原理不同:原子吸收利用原子的特征吸收光谱;原子荧光则利用原子的激发-跃迁光谱(荧光)。3、灵敏度不同:对于原子吸收,增加光源强度同时会增加背景吸收,而原子荧光信号强度与激发光源强度成正比,故灵敏度可以极大提高。4、使用
原子荧光光谱仪和原子吸收光谱仪的区别
原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。原子吸收光谱仪是从光源辐
原子吸收光谱仪和原子荧光光谱仪的区别
两种仪器的区别:1、机构光路不同:原子吸收光源、原子化器和检测器在一条光路上;原子荧光为垂直光路。2、原理不同:原子吸收利用原子的特征吸收光谱;原子荧光则利用原子的激发-跃迁光谱(荧光)。 3、灵敏度不同:对于原子吸收,增加光源强度同时会增加背景吸收,而原子荧光信号强度与激发光源强度成正比,故灵敏度
原子发射光谱和原子荧光光谱的区别
根本差别在于激发基态原子的外层电子跃迁的方式,发射光谱属于热致激发,即基态原子吸收热量后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线;分子荧光则是属于光致激发,基态原子受光辐射后,其外层电子跃迁致较高能级,然后跃迁回较低能态发射的特征谱线。