实验室光学仪器原子吸收光谱仪分光系统常见种类

一、原子吸收光谱仪的外光路原子吸收光谱仪外光路的作用是将元素灯的光汇聚,从原子化器的最佳位置通过原子化区,然后聚焦到单色器的入射狭缝。商品原子吸收光谱仪的外光路各不相同,可简单地分为单光束和双光束两种类型图1 所示为两种类型的光学系统的原理简图。图1中(a)为单光束仪器的光路图。这种光学系统以其结构简单、光能损失少而被广泛采用。元素灯(L)与氘灯(D2)的光通过半透半反镜或旋转反射镜重合在一起通过原子化器,实现氘灯背景校正功能。单光束系统的缺点是不能消除光源波动造成的影响,基线漂移较大,空心阴极灯要预热一定时间,待稳定后才能进行测定。近年来随着电子技术的发展,单光束仪器得到不断的完善和改进,使仪器的稳定性有了很大提高。尤其是微机技术的发展,再配合自动进样器,在每次进样的过程中可以自动进行基线校正,有效地消除了基线漂移的影响,使单光束仪器的性能大大提高。用旋转切光器把光源输出的光分为两路光束,其中一束通过原子化器作为样品......阅读全文

实验室光学仪器原子吸收光谱仪分光系统常见种类

一、原子吸收光谱仪的外光路原子吸收光谱仪外光路的作用是将元素灯的光汇聚,从原子化器的最佳位置通过原子化区,然后聚焦到单色器的入射狭缝。商品原子吸收光谱仪的外光路各不相同,可简单地分为单光束和双光束两种类型图1 所示为两种类型的光学系统的原理简图。图1中(a)为单光束仪器的光路图。这种光学系统以其结构

实验室光学仪器原子吸收光谱仪原子化器的种类及功能

一、氢化物发生-原子化器对于As、Se、Te、Sn、Ge、Pb、Sb、Bi等元素,可在一定酸度下,用NaBH4或KBH4还原成易挥发、易分解的氢化物,如AsH3、SnH4等,然后由载气(氩气或氮气)送入置于吸收光路中的电热石英管内,氢化物分解为气态原子,测定其吸光度。其检出限比火焰法低1~3个数量级

实验室光学仪器原子吸收光谱仪的检测系统结构分析

一、光电倍增管光电倍增管是一种多极的真空光电管,内部有电子倍增机构,内增益极高,是目前灵敏度最高、响应速度最快的一种光电检测器,广泛应用于各种光谱仪器上。光电倍增管由光窗、光电阴极、电子聚焦系统、电子倍增系统和阳极等5个部分组成。光窗是入射光的通道,同时也是对光吸收较多的部分,波长越短吸收越多,所以

实验室光学仪器原子吸收光谱仪低温原子化器简介

低温原子化是利用某些元素(如Hg)本身或元素的氢化物(如AsH3)在低温下的易挥发性,将其导入气体流动吸收池内进行原子化。目前通过该原子化方式测定的元素有Hg,As,Sb,Se,Sn,Bi,Ge,Pb,Te等。生成氢化物是一个氧化还原过程,所生成的氢化物是共价分子型化合物,沸点低、易挥发分离分解。A

实验室光学仪器原子吸收光谱仪的基本构造

原子吸收光谱仪(又称原子吸收分光光度计)由光源、原子化器、分光器、检测系统等几部分组成。随着原子吸收光谱分析在工作中的广泛应用原子吸收光谱仪也有了很大发展,不论在仪器性能、分析速度和自动化方面,均有很大改进。按光学系统分类,原子吸收光谱仪可分为单光束型(single beam type)和双光束型(

实验室光学仪器原子吸收光谱仪各类原子化器的介绍

(一)管壁原子化 管壁原子化是将样品溶液由进样孔滴在管壁上,经干燥、灰化阶段后快速升温原子化。在升温过程中,管壁由大电流流经产生的欧姆热而升高温度,管内空间的气相温度是靠管壁的辐射热升高的;管的进样孔附近,即管的中心部分管壁的温度高,两端温度低,且由中心向两端呈由高至低的温度梯度分布,整个石墨管的管

实验室光学仪器原子吸收光谱仪石墨管原子化器简介

(一)石墨材料 石墨由于具有良好的性能,作为石墨管原子化器的材料沿用至今。石墨除了具有强烈的还原性外,还具有以下性能:(1)电阻很小,可以在低压、大电流条件下工作;(2)有很好的导热率,热膨胀系数极小,有一般金属的几分之一到几十分之一;(3)抗拉强度随温度上升而增加,在2500℃时相当于常温下的2倍

专用原子吸收光谱仪种类

专用原子吸收光谱仪种类有多种。1、按原子化器可分:专用火焰原子吸收光谱仪和专用石墨炉原子吸收光谱仪等。2、按分析目的可分:实验室专用原子吸收光谱仪和工业专用原子吸收光谱仪。3、按分析元素数可分:专用单元素原子吸收光谱仪和专用双元素原子吸收光谱仪。4、按分析特征可分:专用高选择性原子吸收光谱仪和专用高

原子吸收光谱仪的分光系统相关介绍

  1.作用:将待测元素的共振线与邻近谱线分开。  2.组件:色散元件(棱镜、光栅),凹凸镜、狭缝等。  3.单色器性能参数  (1)倒线色散率(D) 两条谱线间的距离与波长差的比值Δl/Δλ为线色散率。实际工作中常用其倒数Δλ/Δl  (2)分辨率 仪器分开相邻两条谱线的能力。用该两条谱线的平均波

实验室光学仪器原子吸收光谱仪进样方法介绍

1.常规进样系统原子吸收光谱仪进样方式可以手动(包括悬浮液微量注射器手动进样)也可以自动(包括间断连续进样、流动注射进样)。自动进样分为火焰法进样器(见图1)和外置式石墨炉进样器(见图2),近年也有内置式产品推出。图1火焰法进样器图2 外置式石墨炉进样器2.流动注射进样法般多采用多通道蠕动泵装置,把

实验室光学仪器原子吸收光谱仪光源空心阴极灯

一、空心阴极灯 最早将空心阴极灯(HCL)用于原子吸收光谱分析法的是沃尔什和他的同事,他们制作了Ag、Al、Au等空心阴极灯。国内关于空心阴极灯的研制开始于20世纪60年代初期,到20世纪70年代初期已经能生产30多种空心阴极灯。1.空心阴极灯的结构 在密闭的硬质玻璃壳内封入一个位于灯的中心线上、内

实验室光学仪器原子吸收光谱仪石墨炉的温度特性

(一)石墨炉温度的时间特性马斯曼型商品石墨炉与里沃夫炉不同之处是,由室温分步上升到原子化所需的温度并达到平衡。在达到平衡之前的加热过程中,石墨炉原子化器的温度随时间而变化,用升温速率dT/dt来描述。由于石墨炉电源中最大功率升温,光控和快速响应电路技术的发展,达到平衡的时间,从20世纪70年代由2~

实验室光学仪器单光束型原子吸收光谱仪产品介绍

一般简易的原子吸收光谱仪基本上都采用单光束型。来自光源的特征辐射通过原子化器,部分辐射被基态原子吸收,透过部分经过分光系统,使所需的辐射通向检测器,将光信号转变成电信号经放大读出。单光束型仪器具有结构简单、体积较小、价格低能量高等特点,能满足日常分析要求。缺点是不能消除光源波动造成的影响,基线漂移,

实验室光学仪器传统双光束型原子吸收光谱仪的构造

仪器将来自光源的特征辐射经切光器(旋转反射镜)分解成样品光束(S)和参比光束(R),样品光束通过原子化器被基态原子部分吸收,参比光束不通过原子化器,其光强不被减弱,两束光由半透明反射镜合为一束,交替地进入单色器,经分光后进入检测器。空心阴极灯的光脉冲和旋转反射镜是同步的,当旋转反射镜在某一位置时,只

实验室光学仪器实时双光束型原子吸收光谱仪的构造

这种仪器将元素灯的光束通过半透半反镜的透过部分作为样品光束。元素灯的光束在半透半反镜的反射部分,通过光导纤维进入分光器中,成为参比光束。两束光在同一时间进入单色器进行分光,同一时间内分别进入两个不同的检测器中被检测。它完全克服灯发射强度的漂移,把仪器的稳定性和准确性提高到一个新的水平。传统双光束型原

实验室光学仪器单/双光束自动切换型原子吸收光谱仪

这种类型的仪器,其旋转反射镜是可移动的,将它切入光路后,仪器为双光束工作模式,将旋转反射镜移离光路,仪器就变成了单光束工作模式。

实验室光学仪器原子吸收光谱仪光电倍增管的结构

在原子吸收光谱仪中,光电倍增管主要用于将光信号转变成电信号。光电倍增管由一个带阳极的真空光电管,一组光敏电极(光阴极)和一组发射阴极(打拿极)组成。相对于光阴极,各打拿极正电势逐级增加。光电倍增管通常有十个电极,在特殊情况下,其电极总数可增至13个。从光阴极释放的一个光电子被第一打拿极吸引,并落在第

实验室光学仪器原子吸收光谱仪光源无极放电灯

早在1928年,杰克逊(Jackson)就开始使用以无线电频率供电的无极放电灯(elec trodeless discharge lamp,简称EDL),1984年,马格斯(Meggers)用它们来测定原子光谱的超精细结构。这些灯能产生窄线和无自吸的高强度光谱。自从1967年报道了无极放电灯在原子吸

原子吸收光谱仪种类及方法简介

 1. 火焰式原子吸收光谱法( FLAA:   直接将样品导入仪器进行侦测。其不同于感应耦合电浆原子发射光谱法者,为只能进行单一元素的检测,及较不会受到元素间光谱线的干扰。笑气/乙炔或空气/乙炔火焰系作为将吸入的样品解离的能源,使样品变成自由的原子态,而可吸收待测原子的特定光线,分析某些元素时,所使

原子吸收光谱仪种类及方法简介

  目前,市场上常见的原子吸收光谱仪有火焰式、石墨炉式、氢化式、冷蒸汽式等四类。   1. 火焰式原子吸收光谱法( FLAA:   直接将样品导入仪器进行侦测。其不同于感应耦合电浆原子发射光谱法者,为只能进行单一元素的检测,及较不会受到元素间光谱线的干扰。笑气/乙炔或空气/乙炔火焰系作为将吸入的样品

实验室光谱仪器原子吸收光谱仪中的火焰种类及结构

 一、火焰的种类    原子吸收光谱分析中常用的火焰有:空气-乙炔、空气-煤气(丙烷)和一氧化二氮-乙炔等火焰。   (1)空气-乙炔。这是最常用的火焰。此焰温度高(2300℃),乙炔在燃烧过程中产生的半分解物C*、CO*、CH*等活性基团,构成强还原气氛,特别是富燃火焰,具有较好的原子化能力。用这

实验室光谱仪器原子吸收光谱仪激发光源的种类

原子吸收使用的激发光源有锐线光源和连续光源两种。一、锐线光源对锐线光源性能的要求:①有足够强度;②发射谱线宽度小;③光谱纯度高、背景低,共振线两侧背景应

实验室光谱仪器原子吸收光谱仪的常见问题处理

1、为什么原子吸收仪器的灵敏度会突然下降了一半?通常原子吸收分光光度计灵敏度下降的原因有:A、元素灯能量下降,低于原始能量得2/3;B、雾化器故障,雾化效果不好;C、燃烧头污染;D、检测器故障,多半是老化(但这种现象很少);E、样品吸收管路堵塞(这种现象经常导致灵敏度下降);F、气体的燃烧比不对,或

原子吸收光谱仪的原子化器系统

一,火焰原子化器 火焰原子化法是利用气体燃烧形成的火焰来进行原子化的,实际上就是一个喷雾燃烧器,由三部分组成,即喷雾器、雾化室和燃烧器.  喷雾器:将试样溶液转为雾状。  雾化室:内装撞击球和扰流器(去除大雾滴并使气溶胶均匀)。  燃烧器:产生火焰并使试样蒸发和原子化。    火焰---试样雾滴在火

原子吸收光谱仪的原子化器系统

原子化器系统:原子化器是将样品中的待测组份转化为基态原子的装置。一,火焰原子化器 火焰原子化法是利用气体燃烧形成的火焰来进行原子化的,实际上就是一个喷雾燃烧器,由三部分组成,即喷雾器、雾化室和燃烧器.  喷雾器:将试样溶液转为雾状。  雾化室:内装撞击球和扰流器(去除大雾滴并使气溶胶均匀)。  燃烧

原子吸收光谱仪原子化系统维护

  摘要:本文对原子吸收光谱仪原子化系统维护进行了论述。  1、原子化系统组成及作用  一套完整的原子化系统是由:燃烧系统和雾化系统组成。具体的组成及相关部件名称见下图。  1.1 组成部件  (1)附加助燃气入口;(2)燃气入口;(3)助燃气入口;(4)调整螺栓;(5)样品溶液吸入口;(6)锁扣;

实验室光学仪器原子吸收分光光度计的基本结构及功能

原子吸收分光光度计(原子吸收光谱分析仪)包括四大部分:光源、原子化系统、分光系统、检测系统,如图1-1所示。图1-1 原子吸收分光光度计基本构造示意图1、光源光源的作用是辐射待测元素的特征光谱(实际辐射的是共振线和其他非吸收谱线),以供测量用。为了获得较高的灵敏度和准确度,所使用的光源必须满足如下要

原子吸收分光光度计检测元素种类

原子吸收分光光度计各检测方法实例仪器:SDA-100型原子吸收分光光度计 生产厂家:济南精测电子科技有限公司常测元素种类A 标准火焰法(部分非常冷门元素,理论上可以测,没有实际测过):锂、钠、镁、钾、钙、铬(gè) 锰、铁、钴、镍(niè) 铜、锌、镓(jiā) 锗(zhě) 铷(rú) 锶(sī)

什么是原子吸收分光光度计/原子吸收光谱仪

  原子吸收分光光度计是本世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器,这种方法根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。  原子吸收分光光度计一般

原子吸收光谱仪和原子吸收分光光度计的区别

原子吸收就是把待测元素原子化,然后根据不同的原子对特定波长有吸收进行测定。因为原子化的方式不同,可分为火焰原子化器,石墨炉原子化器等。这两种目前也是比较常用的,火焰可测含量为%至ppm级的元素,石墨炉可测ppb级的。可根据水泥中MgO的含量来选择合适的原子化器。