塞曼效应的起源和历史
塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的。他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。......阅读全文
光谱的原理和起源
复色光中有着各种波长(或频率)的光,这些光在介质中有着不同的折射率。因此,当复色光通过具有一定几何外形的介质(如三棱镜)之后,波长不同的光线会因出射角的不同而发生色散现象,投映出连续的或不连续的彩色光带。这个原理亦被应用于著名的太阳光的色散实验。太阳光呈现白色,当它通过三棱镜折射后,将形成由红、
RNAi的发现和起源
首次发现dsRNA能够导致基因沉默的线索来源于线虫Caenorhabditis elegans的研究。>1995年,康乃尔大学的Su Guo博士和>Kemphues在试图阻断秀丽新小杆线虫(C. elegans)中的par-1基因时,发现了一个意想不到的现象。她们本是利用反义RNA技术特异性地阻断
塞曼效应仪相关解释
塞曼效应是指原子在外磁场中发光谱线发生分裂且偏振的现象;历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。 荷兰物理学家塞曼在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作
塞曼效应仪详细内容
塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的。他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量
膜电位的概念和起源
膜电位(Membrane Potential)通常是指以膜相隔的两溶液之间产生的电位差。一般是指细胞生命活动过程中伴随的电现象,存在于细胞膜两侧的电位差。膜电位在神经细胞通讯的过程中起着重要的作用。1791年意大利解剖学家加伐尼(L.Galvani)偶然发现,如果将蛙腿的肌肉置于铁板上再用铜钩钩住蛙
细胞疗法的定义和起源
细胞疗法是一种将活细胞注入患者体内以治疗疾病的治疗手段,如在免疫治疗中将T细胞移入至患者体内后通过细胞介导免疫以对抗癌细胞,或移植干细胞至患者体内促使病变组织再生。细胞疗法起源于十九世纪,在二十世纪中期,研究人员发现,人体细胞能减缓患者身体对器官移植的排斥,从而使得骨髓移植能顺利完成。近几十年来,干
热分析的起源和发展
1899年英国罗伯特-奥斯汀(Roberts-Austen)次使用了差示热电偶和参比物,大大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。1915年日本东北大学本多光太郎,在分析天平的基础上研发了“热天平”即热重法(TG),后来法国人也研发了热天平技术。 1964年美国瓦特逊(Watson)
球棍模型的概念和起源
球棍模型(英语:Ball-and-stick models)是一种空间填充模型(space-filling model),用来表现化学分子的三维空间分布。在此作图方式中,线代表化学键,可连结以球型表示的原子中心。最早的球棒分子模型是由德国化学家奥古斯特·威廉·冯·霍夫曼(August Wilhelm
Westernblot法的起源和发展
生物大分子印迹法实际上是凝胶电泳技术、固定化技术及分子亲和技术三者融为一体的综合性技术,其核心在于把凝胶电泳已分离的区带转移并印迹于固定化纸上。生物大分子印迹法始创于1975年,内苏格兰爱丁堡大学E.M.Southern首先提出。他将限制酶切后的DNA片段先进行琼脂糖凝胶电泳,把一张硝酸纤维素纸放在
拉曼光谱的起源和应用
拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。
抗体酶的起源和发展
抗体酶,又称催化抗体,是一类具有催化能力的免疫球蛋白,即通过一系列化学与生物技术方法制备出的具有催化活性的抗体,它既具有相应的免疫活性,又能像酶那样催化某种化学反应。1984年列那(Lerner)进一步推测:以过渡态类似物作为半抗原,则其诱发出的抗体即与该类似物有着互补的构象,这种抗体与底物结合后,
DNA印迹法的起源和原理
这种方法最初是由Southern于1975年建立的。方法中DNA转移的方式和复印的过程一样,比较准确地保持了特异DNA顺序在电泳图谱中的位置,也可将变性的凝胶负压干燥后与特定的DNA探针进行原位杂交。它把电泳分离和杂交结合起来,不但能检测出特异的DNA序列片段,而且能进行定位和测定分子量。即先以电泳
光谱学的起源和发展
光谱学的研究已有三百多年的历史了。1666年,I.牛顿把通过玻璃棱镜的太阳光展成从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是最早对光谱的研究。其后一直到1802年,W.H.渥拉斯顿与1814年 J.von夫琅和费彼此独立地观察到了光谱线。每条谱线只代表一种“颜色”的光。这
PCR的定义和历史
聚合酶链式反应(PCR)是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点是能将微量的DNA大幅增加。因此,无论是化石中的古生物、历史人物的残骸,还是几十年前凶杀案中凶手所遗留的毛发、皮肤或血液,只要能分离出一丁点的DNA,就能用PCR加以放大,
塞曼效应原理和数据模型
塞曼效应证实了原子具有磁矩和空间取向量子化的现象,至今塞曼效应仍是研究能级结构的重要方法之一。正常塞曼效应可用经典理论给予很好的解释;而反常塞曼效应却不能用经典理论解释,只有用量子理论才能得到满意的解释。塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼在1896年发现:把产生光谱的光源置于足够强
受激发射的的概念和起源
受激发射(stimulated emission)是产生激光的重要步骤。电子自高能态受到光的激发而跃迁到低能态,同时发射与激发光的相位、偏振方向和传播方向相同的光,称为受激发射。 受激发射是激光的主要光源。受激发射的光放大(英语:Light Amplification by Stimulated E
塞曼效应实验仪的特点有哪些?
塞曼效应实验是大学物理中的一个实验,许多院校都正在开设或准备开设。 以往塞曼效应实验仪的观测方法各有缺陷,因此我们重新设计了塞曼效应实验仪的光学部件和光路; 采用了CCD摄像头和图像采集卡与微机相连,构成微机化塞曼效应实验仪,不仅克服了以往实验方法的缺点; 而且干涉条纹
气相色谱和色谱理论的起源
1952年马丁和詹姆斯提出用气体作为流动相进行色谱分离的想法,他们用硅藻土吸附的硅酮油作为固定相,用氮气作为流动相分离了若干种小分子量挥发性有机酸。气相色谱的出现使色谱技术从最初的定性分离手段进一步演化为具有分离功能的定量测定手段,并且极大的刺激了色谱技术和理论的发展。相比于早期的液相色谱,以气体为
生物药剂学的起源和发展
生物药剂学 是研究给药后药物从吸收到消除的整个体内过程,以及各种制剂因素和生物因素对这一过程和药效的影响。1950年代初,人们普遍认为“化学结构决定药效”,药剂学只是为改善外观、掩盖不良嗅味而便于服用。随着大量的临床实践证明,人们逐渐开始认识到剂型和生物因素对药效的影响。因此研究药物在代谢过程的各种
免疫印迹法的概念和起源
免疫印迹法 (Western blotting) 是一种将高分辨率凝胶电泳和免疫化学分析技术相结合的杂交技术。免疫印迹法具有分析容量大、敏感度高、特异性强等优点,是检测蛋白质特性、表达与分布的一种最常用的方法,如组织抗原的定性定量检测、多肽分子的质量测定及病毒的抗体或抗原检测等。 免疫印迹法(imm
免疫荧光技术的起源和原理
免疫荧光(immunofluorescence technic)Coons等于1941年首次采用荧光素进行标记而获得成功。这种以荧光物质标记抗体而进行抗原定位的技术称为荧光抗体技术(fluorescentantibodytechnique)。用荧光抗体示踪或检查相应抗原的方法称荧光抗体法;用已知的荧
生物芯片的技术起源和原理
生物芯片,又称蛋白芯片或基因芯片,它们起源于DNA杂交探针技术与半导体工业技术相结合的结晶。该技术系指将大量探针分子固定于支持物上后与带荧光标记的DNA或其他样品分子(例如蛋白,因子或小分子)进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。
卡介苗的功能和研究历史
卡介苗(BCG Vaccine)是由减毒牛型结核杆菌悬浮液制成的活菌苗,具有增强巨噬细胞活性,加强巨噬细胞杀灭肿瘤细胞的能力,活化T淋巴细胞,增强机体细胞免疫的功能。最早由法国科学家卡尔梅特(Calmette)和介朗(Guérin)研制成功
电泳的定义和研究历史
电泳(electrophoresis, EP)是电泳现象的简称,指的是带电颗粒在电场作用下,向着与其电性相反的电极移动的现象。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。1807年,由俄国莫斯科大学的斐迪南·弗雷德里克·罗伊斯(Ferdinand Frederic Reuss)最早
考马斯亮兰法的起源和应用
双缩脲法(Biuret法)和Folin—酚试剂法(Lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的 蛋白质溶液测定的方法。 1976年由Bradford建立的考马斯亮兰法(Bradford法),是根据蛋白质与染料相结合的原理设计的。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在
俄歇电子能谱的起源和介绍
俄歇电子能谱(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出来的
关于少突胶质细胞的简介和起源
(一)简介: 少突胶质细胞肿瘤包括少突胶质细胞瘤(oligodendroglioma)和间变性(恶性)少突胶质细胞瘤(anaplasticoligodendroglioma)。少突胶质细胞瘤的WHO恶性度分类为Ⅱ级,间变性少突胶质细胞瘤WHO的恶性度分类为Ⅲ级。由于少突胶质细胞瘤内常含有其他胶
革兰染色法的起源和原理
这种染色法是由丹麦医生革兰于1884年所发明,最初是用来鉴别肺炎球菌与克雷伯肺炎菌。革兰染色法一般包括初染、媒染、脱色、复染等四个步骤。未经染色的细菌,由于其与周围环境折光率差别甚小,故在显微镜下极难区别。经染色后,阳性菌呈紫色,阴性菌呈红色,可以清楚地观察到细菌的形态、排列及某些结构特征,从而用以
锂电池的概念和历史
锂电池是一类由锂金属或锂合金为正/负极材料、使用非水电解质溶液的电池。1912年锂金属电池最早由Gilbert N. Lewis提出并研究。20世纪70年代时,M. S. Whittingham提出并开始研究锂离子电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。随
溯祖理论的历史和概念
溯祖理论诞生于20世纪80年代后期。经过十几年的发展日趋完善,并成为研究群体遗传及分子演化的有利工具,由于理论本身的数学分析严密性,对于基因组数据结构的精细处理,有着传统的遗传学理论无可比拟的优越性。