正常塞曼效应和反常塞曼效应

在正常塞曼效应中,每条谱线分裂为3条分线,中间1条为π组分,其频率不受磁场的影响;其他两条称为组分,其频率与磁场强度成正比。在反常塞曼效应中,每条谱线分裂为3条分线或更多条分线,这是由谱线本身的性质所决定的。反常塞曼效应,是原子谱线分裂的普遍现象,而正常塞曼效应仅仅是假定电子自旋动量矩为零,原子只有轨道动量矩时所有的特殊现象。......阅读全文

正常塞曼效应和反常塞曼效应

在正常塞曼效应中,每条谱线分裂为3条分线,中间1条为π组分,其频率不受磁场的影响;其他两条称为组分,其频率与磁场强度成正比。在反常塞曼效应中,每条谱线分裂为3条分线或更多条分线,这是由谱线本身的性质所决定的。反常塞曼效应,是原子谱线分裂的普遍现象,而正常塞曼效应仅仅是假定电子自旋动量矩为零,原子只有

塞曼效应简介

塞曼效应是荷兰物理学家塞曼在 1896 年发现的。他发现,发光体放在磁场中时,光谱线发生分裂的现象。是由于外磁场对电子的轨道磁矩和自旋磁矩的作用,或使能级分裂才产生的。其中谱线分裂为2条(顺磁场方向观察)或3条(垂直于磁场方向观察)的叫正常塞曼效应;3条以上的叫反常塞曼效应(见塞曼效应)。塞曼效应证

塞曼效应的起源和历史

塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的。他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力

塞曼效应的概念和应用

塞曼效应是荷兰物理学家塞曼在 1896 年发现的。他发现,发光体放在磁场中时,光谱线发生分裂的现象。是由于外磁场对电子的轨道磁矩和自旋磁矩的作用,或使能级分裂才产生的。其中谱线分裂为2条(顺磁场方向观察)或3条(垂直于磁场方向观察)的叫正常塞曼效应;3条以上的叫反常塞曼效应(见塞曼效应)。塞曼效应证

什么是塞曼效应?

塞曼效应是指原子在外磁场中发光谱线发生分裂且偏振的现象;历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。

什么是塞曼效应?

塞曼效应是荷兰物理学家塞曼在 1896 年发现的。他发现,发光体放在磁场中时,光谱线发生分裂的现象。是由于外磁场对电子的轨道磁矩和自旋磁矩的作用,或使能级分裂才产生的。其中谱线分裂为2条(顺磁场方向观察)或3条(垂直于磁场方向观察)的叫正常塞曼效应;3条以上的叫反常塞曼效应(见塞曼效应)。塞曼效应证

塞曼效应仪详细内容

  塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的。他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量

塞曼效应仪相关解释

  塞曼效应是指原子在外磁场中发光谱线发生分裂且偏振的现象;历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。  荷兰物理学家塞曼在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作

塞曼效应的理论发展

1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中的钠火焰的光谱,他发现钠的D谱线似乎出现了加宽的现象。这种加宽现象实际是谱线发生了分裂。随后不久,塞曼的老师、荷兰物理学家洛仑兹应用经典电磁理论对这种现象进行了解释。他认为,由于电子存在轨道磁矩,并且磁矩方向在空间的取向是量子化的,

塞曼效应校正背景的原理

当光源处于一定强度的磁场内时,光源发射出单一波长的谱线分裂为π,α±三种不同波长的谱线,π和α±偏振方向互相垂直π(可用P表示)保持原来波长,和磁场方向平行,α±(可用P⊥表示)为离开原波长0.1A以上的两条谱线,和磁场方向垂直。由于基态原子只吸收波长差在0.1A以下的共振线,而背景吸收波长范围从1

塞曼效应校正背景的特点

塞曼效应校正背景可在全波段进行,可校正吸光度高达1.5~2.0A的背景,而氘灯只能校正吸光度小于1A的背景,塞曼效应背景校正的准确度较高。采用恒定磁场调制方式,测定灵敏度比常规原子吸收法有所降低,可变磁场调制方式的测定灵敏度已接近常规原子吸收法。塞曼效应能在共振线同一波长处校正背景它不仅对连续背景具

塞曼效应原理和数据模型

塞曼效应证实了原子具有磁矩和空间取向量子化的现象,至今塞曼效应仍是研究能级结构的重要方法之一。正常塞曼效应可用经典理论给予很好的解释;而反常塞曼效应却不能用经典理论解释,只有用量子理论才能得到满意的解释。塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼在1896年发现:把产生光谱的光源置于足够强

简述泡利不相容原理的建立

  早在1921年前,泡利就被量子论的发展深深地吸引着,在读研究生时,就对原子光谱中的反常塞曼效应有着浓厚的兴趣。所谓塞曼效应,就是在强磁场的作用下原子、分子和晶体的能级发生变化,发射的光谱线发生分裂的现象。  塞曼效应分为两种:一种是存在于电子的自旋磁矩为零时的情况称为正常塞曼效应;而另一种是电子

塞曼效应实验仪的特点有哪些?

   塞曼效应实验是大学物理中的一个实验,许多院校都正在开设或准备开设。    以往塞曼效应实验仪的观测方法各有缺陷,因此我们重新设计了塞曼效应实验仪的光学部件和光路;    采用了CCD摄像头和图像采集卡与微机相连,构成微机化塞曼效应实验仪,不仅克服了以往实验方法的缺点;    而且干涉条纹

检测汞污染的利器塞曼效应原子吸收测汞仪

   重金属污染是我国当前危害最大的环境污染问题之一。重金属主要通过矿山开采,金属冶炼,化石燃料的燃烧,金属加工及化工生产废水,施用农药化肥和生活垃圾等人为污染源,以及地质侵蚀、风化等天然源的形式进入环境,严重威胁人类和其他生物的生存。目前由于监测及检测条件的制约,有许多地区存在着重金属的污染问题,

塞曼效应石墨炉原子吸收光谱法直接测定乳汁铅

探讨塞曼效应石墨炉原子吸收光谱法直接测定乳汁铅的方法。[方法]样品不用前处理,采用标准曲线法,用基体改进剂以1:4稀释后直接进样测定,并进行了质量控制分析。[结果]方法的线性范围为(0-150)μg/L.批内精度(RSD%)在2.1-6.0之间,批间精度(tLSD%)在5.8-8.1之间,特征浓度是

塞曼效应实验仪适用于高等院校近代物理实验

1896年,荷兰物理学家塞曼(P.Zeeman)发现当光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同,后人称此现象为塞曼效应。 塞曼效应是继英国物理学家法拉第1845年发现磁致旋光效应,克尔1876年发现磁光克尔效应之后,发现的又

三磁场塞曼背景校正技术

对于正常塞曼分裂的元素,如果磁场强度足够高,可以使成分与π成分分离(如钡约为0.8特斯拉),得到的灵敏度与普通的原子吸收光谱仪相同。如果磁场强度不够高,灵敏度将会降低。对于呈现反常塞曼分裂的元素,其灵敏度和磁场强度有着密切的关系。随着磁场强度增大,成分离开共振线的频移更大,从而灵敏度增大。当磁场强度

原子吸收光谱中的背景吸收及仪器校正技术的发展

  摘 要 介绍了火焰原子吸收光谱(FAAS)和石墨炉原子吸收光谱(GFAAS)背景吸收干扰的特点,讨论了氘灯连续光源背景校正、塞曼效应背景校正、自吸收效应背景校正的原理和优缺点,对现代原子吸收分光光度计中各种背景校正方式的发展进行了综述。  干扰少,灵敏度高,选择性好是原子吸收光谱(AAS)分析的

干扰效应及消除方法

原子吸收光谱法的主要干扰有物理干扰、化学干扰、电离干扰、光谱干扰和背景干扰等。5.3.2.1 物理干扰物理干扰是指试液与标准溶液物理性质之间有差异而产生的干扰。如黏度、表面张力或溶液的密度等的变化,影响样品的雾化或气溶胶到达火焰等引起原子吸收强度的变化而引起的干扰。为了消除物理干扰可采用配制与被测试

出售全新进口LUMEX塞曼效应汞分析仪RA915M及UMA型附加装置

产品名称:LUMEX塞曼效应汞分析仪RA-915M及UMA型附加装置所属行业:仪器仪表商品价格:面议剩余库存:1联系人:李工、杨工联系方式:13327803408、13951987748联系邮箱:360181468@qq.com 汞分析仪彩页.pdf转让LUMEX便携式塞曼效应汞分析仪 RA-915

光谱学的起源和发展

  光谱学的研究已有三百多年的历史了。1666年,I.牛顿把通过玻璃棱镜的太阳光展成从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是最早对光谱的研究。其后一直到1802年,W.H.渥拉斯顿与1814年 J.von夫琅和费彼此独立地观察到了光谱线。每条谱线只代表一种“颜色”的光。这

光谱学的研究发展历史

光谱学的研究已有三百多年的历史了。1666年,I.牛顿把通过玻璃棱镜的太阳光展成从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是最早对光谱的研究。其后一直到1802年,W.H.渥拉斯顿与1814年 J.von夫琅和费彼此独立地观察到了光谱线。每条谱线只代表一种“颜色”的光。这里颜

原子吸收光谱的氘灯扣背景和自吸收扣背景的区别

原子吸收扣背景的3种常见方法:自吸收扣背景、氘灯扣背景和塞曼效应扣背景自吸收扣背景法缺点:1、可能会校正过度 2、灯损耗大,影响灯的寿命。氘灯扣背景法缺点:1、只能校正紫外区的背景信号,不能校正可见区的背景信号;2、空心阴极灯和氘灯的光斑很难重合,导致校正误差;3、有临近谱线的干扰时,可能会校正过度

原子吸收扣背景的3种常见方法

原子吸收扣背景的3种常见方法:自吸收扣背景、氘灯扣背景和塞曼效应扣背景自吸收扣背景法缺点:1、可能会校正过度 2、灯损耗大,影响灯的寿命。氘灯扣背景法缺点:1、只能校正紫外区的背景信号,不能校正可见区的背景信号;2、空心阴极灯和氘灯的光斑很难重合,导致校正误差;3、有临近谱线的干扰时,可能会校正过度

原子吸收分光光度法背景吸收干扰及消除

  原子化器中非原子吸收的光谱干扰。   ①分子吸收(火焰中难熔盐分子和气体分子)   ②固体或液体微粒对光的散射和折射作用  有关因素:l、基体元素的浓度、火焰条件、原子化方法(石墨炉法大于火焰法)等  减小方法: ①氘灯自动扣背景校正装置(190~350 nm)   两个光源——空心阴极灯和 D

除了氘灯背景校正法,还有哪些方法可以校正原子吸收分光光度计的背景?

除了氘灯背景校正法,还有以下方法可以校正原子吸收分光光度计的背景:一、自吸收法(SR 法)原理:自吸收法是利用空心阴极灯在大电流和小电流下工作时发射谱线的自吸收效应来校正背景的方法。在大电流下,空心阴极灯的发射线变宽,且产生自吸收,此时对原子吸收和背景吸收都有贡献;在小电流下,发射线窄,主要是原子吸

原子吸收的背景为哪几种方法可以校正

一般选择塞曼效应校正背景。所谓塞曼效应校正背景是通过旋转的检偏器把空心阴极灯的光分成平行于磁场的偏振光PII和垂直于磁场的偏振光PI,在石墨炉加上11K高斯的永久磁场。这时吸收线便分裂为π、δ+、δ-三个成分。检偏器和调制器一起旋转,使PII和PI以一定频率交替的通过原子化器。由于吸收线的π成分只吸

原子吸收的背景为哪几种方法可以校正

一般选择塞曼效应校正背景。所谓塞曼效应校正背景是通过旋转的检偏器把空心阴极灯的光分成平行于磁场的偏振光PII和垂直于磁场的偏振光PI,在石墨炉加上11K高斯的永久磁场。这时吸收线便分裂为π、δ+、δ-三个成分。检偏器和调制器一起旋转,使PII和PI以一定频率交替的通过原子化器。由于吸收线的π成分只吸

原子吸收的背景为哪几种方法可以校正

一般选择塞曼效应校正背景。 所谓塞曼效应校正背景是通过旋转的检偏器把空心阴极灯的光分成平行于磁场的偏振光PII和垂直于磁场的偏振光PI,在石墨炉加上11K高斯的永久磁场。这时吸收线便分裂为π、δ+、δ-三个成分。检偏器和调制器一起旋转,使PII和PI以一定频率交替的通过原子化器。由于吸收线的π成分