实验室分析仪器红外光谱仪结构概述
(一)色散型红外光谱仪色散型红外光谱仪(又称色散型红外分光光度计),按测光方式的不同,可以分为光学零位平衡式与比例记录式两类。光学零位平衡式的结构如图1所示。光学零位平衡式仪器是把调制光信号(I0~I)经检测与放大后,用以驱动参比光路上的光学衰减器,使两束光的能量达到零位平衡,同时记录仪与光学衰减器同步运动以记录样品的透光率。图1 光学零位平衡式比例记录式的结构如图2所示。比例记录式仪器是把调制光信号(I→零→I0→零)经检测与放大后分离。通过测量两个电信号的比例而得出样品的透光率。图2 比例记录式(二)干涉型红外光谱仪干涉型红外光谱仪为傅里叶变换红外光谱仪,它没有单色器和狭缝,主要由迈克尔逊干涉仪和计算机两部分组成。FTIR仪器的整机工作原理如图3所示。图3 FTIR仪器的整机工作原理示意图M1—定镜;M2—动镜;BS—分束器;A—放大器;A/D—模数转换器;D/A—数模转换器由光源发出的红外线经准直为平行......阅读全文
实验室分析仪器红外光谱仪结构概述
(一)色散型红外光谱仪色散型红外光谱仪(又称色散型红外分光光度计),按测光方式的不同,可以分为光学零位平衡式与比例记录式两类。光学零位平衡式的结构如图1所示。光学零位平衡式仪器是把调制光信号(I0~I)经检测与放大后,用以驱动参比光路上的光学衰减器,使两束光的能量达到零位平衡,同时记录仪与光学衰减器
实验室光谱仪器红外光谱基本结构概述
一、概述红外光谱法(infrared spectroscopy)是研究红外线与物质间相互作用的科学,即以连续变化的各种波长的红外线为光源照射样品时,引起分子振动和转动能级之间的跃迁,所测得的吸收光谱为分子的振转光谱,又称红外光谱。傅里叶光谱法就是利用干涉图和光谱图之间的对应关系,通过测量干涉图和对干
实验室分析仪器色散型红外光谱仪结构分析
色散型红外光谐仪的组成部件与紫外可见分光光度计相似,也是由光源、吸收池、单色器、检测器以及记录显示装置等五部分组成。但由于两种仪器的工作波长范围不同,除对每一个部件的结构、所用的材料及性能等与紫外可见分光光度计不同外,它们最基本的一个区别是:红外光谱仪的试样是放在光源和单色器之间,而紫外可见分光光度
实验室分析仪器红外光谱仪红外光谱的分区
通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~1000μm)。一般说来,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。近红外光谱仪由于绝大多数有机物和无机物的基
实验室分析仪器红外光谱仪-红外谱图的分区
按吸收峰的来源,可以将2.5~25μm的红外光谱图大体上分为特征频率区(2.5~7.7μm)以及指纹区(7.7~16.7μm)两个区域。其中特征频率区中的吸收峰基本是由基团的伸缩振动产生,数目不是很多,但具有很强的特征性,因此在基团鉴定工作上很有价值,主要用于鉴定官能团。如羰基,不论是在酮、酸、酯或
实验室分析仪器傅里叶变换红外光谱仪
傅里叶变换红外光谱仪目前在红外光谱仪中占有主导地位。傅里叶变换红外光谱仪的核心部件是迈克尔逊干涉仪。 光源发出的光经准直成为平行光,按 45° 角入射到分束器上,其中一半强度的光被分束器反射,射向固定镜 M2,另一半强度的光透过分束器射向动镜 M1。射向固定镜和动镜的光经反射后实际上又会合到了一起,
实验室分析仪器色散型红外光谱仪
色散性红外光谱仪又叫做光栅扫描型红外光谱仪,其采用棱镜或者光栅作为分光,该类仪器的特点是可进行全谱扫描,分辨率较高。此外,除检测器外,整个光学系统都可与紫外可见分光光度计合用,而市场上也有很多紫外-可见-近红外区域何为一体的光谱仪。
实验室分析仪器-傅里叶变换红外光谱仪
它是非色散型的,核心部分是一台双光束干涉仪(图4中虚线框内所示),常用的是迈克耳孙干涉仪。当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱B(v):式中I(x)为干涉信号;v为波数;x为两束光的光程差
近红外光谱仪概述
近红外光谱(NIR)分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。近红外区域是人们早发现的非可见光区域。但由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,近
实验室分析仪器红外光谱仪基本部件之检测器结构功能
检测器检测器(又称探测器)的作用是检测红外光通过样品后的能量。对检测器的要求是:灵敏度高、噪声低、响应速度快、测量范围宽色散型红外光谱仪常用的检测器是真空热电偶和高莱池,FTIR光谱仪常用的检测器有两类,一类是通用型热释电检测器,另一类是MCT检测器。通用型热释电检测器目前主要有TGS[硫酸三苷肽(
实验室分析仪器-红外光谱仪的应用介绍
红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理
红外光谱仪的应用概述
应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。 红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体
近红外光谱仪的概述
近红外光谱技术(NIR)是90年代以来发展极快、十分引人注目的分析技术之一。随着NIR分析方法的深入应用和发展,已逐渐得到大众的普遍接受和官方的认可。1978年美国和加大就采用近红外法作为分析小麦蛋白质的标准方法,1998年美国材料试验学会制订了近红外光谱测定多元醇(聚亚安酯原材料)中羟值含量的
红外光谱仪的理论概述
电磁光谱的红外部分根据其同可见光谱的关系,可分为近红外光、中红外光和远红外光。 远红外光(大约400-10 cm-1)同微波毗邻,能量低,可以用于旋转光谱学。中红外光(大约4000-400 cm-1)可以用来研究基础震动和相关的旋转-震动结构。更高能量的近红外光(14000-4000 cm-1)
傅里叶变换红外光谱仪概述
红外光谱法 (infrared spectroscopy,IR) 是鉴别化合物和进行物质分子结构研究的重要手段之一,同时也是物质组分定量分析的方法之一,是分子光谱法的一个重要分支。它是一种借助红外光被物质吸收情况,获得被测物质分子内部原子间相对振动和分子转动等信息,并根据所获得信息进行物质分子结构研
实验室光谱仪器傅里叶变换红外显微成像的结构
大多数红外显微成像都是通过将红外显微镜与FTIR光谱仪联用实现的。该装置主要包括三个部分:干涉仪系统、红外显微光学系统以及多通道检测器,典型的红外显微成像系统如图1所示。目前大多数红外成像系统都和傅里叶变换红外光谱仪主机相连,依靠红外光谱仪的干涉系统提供红外干涉光,在一些更新的成像仪器中已将红外光学
实验室分析仪器滤光片型红外光谱仪
滤光片型红外光谱仪采用干涉滤光片进行分光,通过将不同的滤光片固定在转盘上,以此达到测量样品在多个波长处的红外光谱数据。目前滤光片技术的开发已经受到限制,目前的技术水平只能开发出片滤光片。
实验室分析仪器声光滤光型-(AOTF)-红外光谱仪
声光滤光型红外光谱仪是根据声光衍射原理,采用具有较高的声光品质因素和较低的声衰减的双折射单晶制成的分光器件。AOTF 是由双折射晶体、射频辐射源、电声转换器和声波吸收器组成。 AOTF 型红外光谱仪的显著特点是分光系统中无可移动的部件,扫描速度快,但其分辨率不如色散型和傅里叶变换型红外光谱仪,比较适
红外吸收光谱仪的结构
光源 红外光源应是能够发射高强度的连续红外光的物体。常用的有以下光源名称适用波长范围/cm-1说明能斯特(Nernst))灯5000-400ZrO2 ,THO2等烧结而成碘钨灯10000-5000硅碳灯5000-200FTIR,需用水冷或风冷炽热镍铬丝圈5000-200风冷高压汞灯
红外光谱仪的基本结构
1.光源 光源能发射出稳定、高强度、连续波长的红外光,通常使用能斯特(Nernst)灯、碳化硅或涂有稀土化合物的镍铬旋状灯丝。 2.干涉仪 迈克耳孙(Michelson)干涉仪的作用是将复色光变为干涉光。中红外干涉仪中的分束器主要是由溴化钾材料制成的;近红外分束器一般以石英和CaF2为材料
拉曼光谱仪结构概述
色散型激光拉曼光谱仪的结构示意见图1。该仪器主要由激光源、外光路系统(样品室)、单色仪、放大系统及检测系统五部分组成。样品经来自激光源的可见激光激发,其绝大部分为瑞利散射光,少量的各种波长的斯托克斯散射光,还有更少量的各种波长的反斯托克斯散射光,后两者即为拉曼散射。这些散射光由反射镜等光学元件收集,
近红外光谱仪的结构原理
近红外光谱分析仪是利用气体或液体对红外线进行选择性吸收的原理制成的一种分析仪表,它具有灵敏度高反应速度快分析范围宽选择性好抗干扰能力强等特点,被广泛应用于石油化工冶金等工业生产中。近红外光谱分析仪的光源是采用上下两个电极的方法,通上电流,电极之间就形成一个火花式光谱仪光源。在这火花式光谱仪光源中,电
傅里叶变换红外光谱仪结构组成
傅里叶变换红外(Fourier Transform Infrared,FTIR)光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成,是干涉型红外光谱仪的典型代表,不同于色散型红外仪的工作原理,它没有单色器和狭缝,利用迈克尔逊干涉仪获得入射光的干涉图,然后通过
近红外光谱仪的结构原理
近红外光谱分析仪是利用气体或液体对红外线进行选择性吸收的原理制成的一种分析仪表,它具有灵敏度高反应速度快分析范围宽选择性好抗干扰能力强等特点,被广泛应用于石油化工冶金等工业生产中。 近红外光谱分析仪的光源是采用上下两个电极的方法,通上电流,电极之间就形成一个火花式光谱仪光源。在这火花式光谱仪光
近红外光谱仪的结构原理
近红外光谱分析仪是利用气体或液体对红外线进行选择性吸收的原理制成的一种分析仪表,它具有灵敏度高反应速度快分析范围宽选择性好抗干扰能力强等特点,被广泛应用于石油化工冶金等工业生产中。 近红外光谱分析仪的光源是采用上下两个电极的方法,通上电流,电极之间就形成一个火花式光谱仪光源。在这火花式光谱仪光源中
实验室分析仪器傅里叶变换红外光谱仪工作原理及优点
以光栅作为色散元件的红外光谱仪,由于采用了狭缝,能量受到了严格限制,尤其在远红外区能量很弱,它的扫描速率很慢,一次全扫描约需数分钟,使得一些动态研究以及与其他仪器(如色谱)的联用发生了困难,加之它的灵敏度分辨率和准确度也较低,使它在许多方面都不能完全满足需要。随着光学、电子学尤其计算机技术的发展,2
实验室分析仪器红外光谱仪的基本部件之光源
光源是红外光谱仪的关键部件之一,红外辐射能量的高低直接影响检测的灵敏度。理想的红外光源应能够测试整个红外波段,但目前要测试整个红外波段至少需要更换三种光源,即中红外、远红外和近红外光源,其中用得最多的是中红外光源。每种光源只能覆盖一定的波段,故红外的全波段测量常需几种光源,常用的光源如表1所示。 表
实验室分析仪器色散型红外光谱仪的光源材质分析
红外光谱仪中所用的光源通常是一种惰性固体,用电加热使其发射高强度连续红外辐射。常用的光源有能斯特灯和硅碳棒。能斯特灯是用氧化锆、氧化钇和氧化钍烧制而成的中空棒或实心棒。工作温度再1700℃,波数范围在400~5000cm-1。它在室温下是非导体,在工作之前需预热。优点是发光强度高,尤其在σ>1000
傅里叶红外光谱仪的概述
傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束
实验室分析仪器红外光谱仪样品测试的一般步骤
将样品压片装于样品架上放于 FTIR 的样品池处。先粗测透光率是否超过40%,若达到40%以上即可进行扫谱,从4000cm-1 开始到 400cm-1 为止。若未达到40%则重新压片。仪器的操作步骤如下。1.开机按顺序开启红外光谱仪稳压电源、显示器、计算机主机及打印机等电源开关。2.启动软件(1)开