实验室分析仪器高速气质联用仪的技术案例介绍
高速气相色谱(HSGC)的发展与环境、石油化工、生物、食品等复杂体系的分离析,体液中药物动力学和代谢物分析等)的快速分析、过程的快速响应、溶剂分析等。要求密切相关,例如热不稳定化合物、批量样品(如水果、蔬菜中的农药残留物分图2为3min内实现C8~C19 正构烷烃的分析一例,此时线速度为197cm/s。 实际上,高速气相色谱不仅是为了节省分析时间,更重要的是达到峰宽的压缩,增加单位时间内被分离成分的数目。早期的高速气相色谱分析平均每个组分的峰宽也就是5s左右,但比常规GC/MS的10~20s峰宽相比显然有了改善。峰宽的减少意味着在相同注射量的条件下以信噪比表达的灵敏度得到了提高。如果把高速气相色谱发展的几个阶段用峰宽来描述的话,则常规的GC大于10s峰宽,快速GC的峰宽≤1s,而≤0.1s 峰宽可称为特快 GC,≤0.0ls的峰宽称为超快速GC。高速气相色谱的实验是通过提高线速度,减小毛细管的口径......阅读全文
实验室分析仪器高速气质联用仪的技术案例介绍
高速气相色谱(HSGC)的发展与环境、石油化工、生物、食品等复杂体系的分离析,体液中药物动力学和代谢物分析等)的快速分析、过程的快速响应、溶剂分析等。要求密切相关,例如热不稳定化合物、批量样品(如水果、蔬菜中的农药残留物分图2为3min内实现C8~C19 正构烷烃的分析一例,此时线速度为197cm/
气质联用仪GCMS质谱联用(GCMS)技术原理
气相色谱-质谱联用(GC-MS)技术工作原理GC-MS被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和MS的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力;而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行
实验室分析仪器气相色谱-质谱联用系统组成介绍
GC/MS系统(见图)由气相色谱单元、质谱单元、计算机和接口四大件组成,其中气相色谱单元一般由载气控制系统、进样系统、色谱柱与控温系统组成;质谱单元由离子源、离子质量分析器及其扫描部件、离子检测器和真空系统组成;接口是样品组分的传输线以及气相色谱单元、质谱单元工作流量或气压的匹配器;计算机控制系统不
实验室分析仪器气相色谱质谱联用仪的测定方法
总离子流色谱法(total ionization chromatography,TIC)--类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschro
实验室分析仪器气相色谱质谱联用仪的应用范围
气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。
实验室分析仪器气相色谱质谱联用仪的发展背景
色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性
气质联用仪日常维护
载气(1)检查钢瓶压力。像我们实验室就规定载气压力在3mpa的时候就必须对气体进行更换,因为你不能把所有的载气都用完,气体压力不断减少的过程中你会发现测试标液图谱会变得越来越差,因为有杂质气体干扰。(2)检查真空状态。查看真空规,发现真空是否异常,这个异常是针对你平时记录的一个值做比较,像上次我就遇
气质联用仪GCMS质谱联用(GCMS)技术测定方法
总离子流色谱法(totalionizationchromatography,TIC)——类似于GC图谱,用于定量。反复扫描法(repetitivescanningmethod,RSM)——按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。质量色谱法(masschromatog
气质联用仪GCMS气相色谱质谱联用仪日常维护
载气(1)检查钢瓶压力。像我们实验室就规定载气压力在3mpa的时候就必须对气体进行更换,因为你不能把所有的载气都用完,气体压力不断减少的过程中你会发现测试标液图谱会变得越来越差,因为有杂质气体干扰。(2)检查真空状态。查看真空规,发现真空是否异常,这个异常是针对你平时记录的一个值做比较,像上次我就遇
实验室分析仪器气相色谱质谱联用仪的基本部件
质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。
实验室分析仪器气相色谱质谱联用仪数据处理系统介绍
气相色谱质谱联用技术,以其优异的分离定性特点,被广泛地应用于分析复杂混合物中的挥发性组分中。GC-MS的使用过程:将在通常气相色谱仪上优化后的色谱条件移植到GC-MS上,全扫描分析进行定性,然后选取目标化合物的特征质量进行选择性离子扫描,进行定量分析。在气相色谱质谱联用仪中,采用四极杆作为质量分析器
气相色谱质谱联用仪的技术特点和应用
利用气相色谱对混合物有较强的分离能力,在气相色谱/质谱联用仪中,气相色谱仪是作为质谱仪的进样装置,使混合物进入离子源之前,先经气相色谱仪的分离,各组分按时间顺序进入离子源,所产生的离子经质谱仪不断进行扫描测量,得到各化合物的总离子色谱图和对应的特征谱图,这样可以进行定性和定量分析。由于联用仪实现了时
气相色谱质谱联用技术讲解
转眼一周过半,继续与小伙伴们分享专业技术知识。今天分享的话题是有关气相色谱-质谱联用技术的,今天推送的主要内容有—— 仪器系统|一 (一)GC-MS系统的组成 气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现气相色谱和质谱联用以后,这一技术得到长足的发展。在
气质联用仪日常维护要点
载气(1)检查钢瓶压力。像我们实验室就规定载气压力在3mpa的时候就必须对气体进行更换,因为你不能把所有的载气都用完,气体压力不断减少的过程中你会发现测试标液图谱会变得越来越差,因为有杂质气体干扰。(2)检查真空状态。查看真空规,发现真空是否异常,这个异常是针对你平时记录的一个值做比较,像上次我就遇
气质联用仪操作规程
1、开机:依次打开氦气瓶,质谱仪,气相色谱仪,计算机。打开氦气瓶时,先将主控阀打开至最大,然后调节减压阀使He出口压力在0.5-0.9Mpa之间,一般为0.6。2、系统配置:双击打开GCMS Real Time Analysis,点击系统配置,www.isa1751.com仪器无忧网检查设置过的已用
气相色谱质谱联用技术的应用
GC-MS联用在分析检测和研究的许多领域中起着越来越重要的作用,特别是在许多有机化合物常规检测工作中成为一种必备的工具。如环保领域在检测许多有机污染物,特别是一些浓度较低的有机化合物,如二口恶英等的标准方法中就规定用GC-MS;药物研究、生产、质控以及进出口的许多环节中都要用到GC-MS;法庭科学中
实验室分析仪器液质联用仪发展简史
1977年,LC-MS开始投放市场;1978年,LC-MS首次用于生物样品中的药物分析;1989年,LC-MS-MS取得成功1991年;API LC-Ms用于药物开发;1997年,LC-MS用于药物动力学筛选;1999年,API Q-TOFLC-MS-MS投放市场,大气压离子化接口的应用,彻底改变了
实验室分析仪器气相色谱质谱联用仪数数据处理方法
气相色谱仪检测器输出的信号非常快速(可以视为连续信号),信号强度非常低(小至10+A),同时信号是模拟电信号,因此色谱仪输出电信号无法用简单的方法进行定性、定量处理,首先要把模拟电信号用记录仪记录下来或把模拟信号转换成数字信号储存下来,然后根据不同分析要求再做处理,以获得有关被分析组分的定性、定量结
实验室分析仪器液质联用与气质联用的区别
气质联用仪﹙GC-MS﹚是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。液质联用﹙LC-MS﹚主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽
气相色谱质谱联用仪的质谱原理
质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理 是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。
气相色谱质谱联用仪的质谱原理
质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理 是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。
安捷伦液质联用仪的特点及载气系统介绍
安捷伦液质联用仪是专门为需要定量分析大量样品的实验室而设计的主力仪器系统。改进后的电子系统可以实现高速数据采集和快速极性切换,使这款仪器成为快速分离和高通量分析各种类型样品的理想选择。安捷伦液质联用仪载气系统载气体的使用气体纯度必须达到99·999%,并使用专用钢瓶灌装,载气纯度不够,或剩余的载气量
质谱联用气相色谱技术测定方法
总离子流色谱法(totalionizationchromatography,TIC)——类似于GC图谱,用于定量。反复扫描法(repetitivescanningmethod,RSM)——按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。质量色谱法(masschromatog
质谱联用气相色谱技术接口作用
接口作用:1 压力匹配——质谱离子源的真空度在10-3Pa,而GC色谱柱出口压力高达105Pa,接口的作用就是要使两者压力匹配。2 组分浓缩——从GC色谱柱流出的气体中有大量载气,接口的作用是排除载气,使被测物浓缩后进入离子源。
实验室分析仪器气质联用仪质谱调谐方法
调谐就是调整离子源和四极杆参数来达到理想的信号强度和分辨率。每个四极杆,MS1和MS2,分别调谐。当一个四极杆被调谐的时候,另外一个允许所有离子穿过。7000 型质谱仪调谐时碰撞气可以打开。1、自动调谐(CI源调谐时,甲烷反应气钢瓶总阀要打开,输出压力约0.15 MPa)在仪器控制面板中,点击调谐图
气相色谱质谱联用仪的原理
简单地说,用色谱分离混合物,利用质谱做为检测器,检测分离出的没一个化合物都是什么。这样就不用做标准样了。
气相色谱质谱联用仪的原理
气相色谱原理 气相色谱的流动相为惰性气体, 气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分
质谱联用气相色谱技术常见接口技术
常见接口技术有:1 分子分离器连接(主要用于填充柱)扩散型——扩散速率与物质分子量的平方成反比,与其分压成正比。当色谱流出物经过分离器时,小分子的载气易从微孔中扩散出去,被真空泵抽除,而被测物分子量大,不易扩散则得到浓缩。2 直接连接法(主要用于毛细管柱)在色谱柱和离子源之间用长约50cm,内径0.
气质联用的系统组成
气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱的联用以后,这一技术得到了长足的发展。在所有的联用技术中GC-MS联用技术发展最为完善,应用最广泛。气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送
介绍气相色谱质谱联用仪的色谱柱的维护
在使用色谱柱尤其是使用极性色谱柱时要除去载气中的氧,要注意在更换气瓶时不要混入空气,也可以在气体流路中安装氦气净化器。充分做好试样的前处理,不要使难于挥发的成分进入柱内,避免污染色谱柱。 如果有鬼峰出现,可以先切除色谱柱前端的部分长度,并视基线和柱流失情况,适时老化色谱柱。老化色谱柱时事先设定