实验室分析方法火焰光度检测器(FPD)的基本原理
1、主要原理为组分在富氢火焰中燃烧时,组分不同程度的变为碎片或分子。2、 由于外层电子互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征光谱通过经选择滤光片后被测量。......阅读全文
实验室分析方法火焰光度检测器(FPD)的基本原理
1、主要原理为组分在富氢火焰中燃烧时,组分不同程度的变为碎片或分子。2、 由于外层电子互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征光谱通过经选择滤光片后被测量。
实验室分析仪器火焰光度检测器(FPD)的基本原理
1、主要原理为组分在富氢火焰中燃烧时,组分不同程度的变为碎片或分子。2、 由于外层电子互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征光谱通过经选择滤光片后被测量。
FPD火焰光度检测器主要用于测什么
主要是检测有机磷农药残留的
火焰光度检测器(flamephotometric-detector,FPD)结构
一般分为燃烧和光电两部分;前者为火焰燃烧室,与FID相似,后者由滤光片和光电倍增管等组成。
火焰光度检测器(flamephotometric-detector,FPD)原理
原理:组分在富氢(H2﹕O2>3)的火焰中燃烧时组分不同程度地变为碎片或原子,其外层电子由于互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征的光谱通过经选择的干涉滤光片测量(含有磷、硫、硼、氮、卤素等的化合物均能产生这种光谱)。如硫在火焰中产生350-430nm
实验室分析仪器气相色谱火焰光度检测器(FPD)定义
是一种对含硫、磷化合物具有高选择性的检测器。含硫、磷化合物在富氢火焰中燃烧被打成有机碎片,发出不同波长的特征光谱。
火焰光度检测器(flamephotometric-detector,FPD)性能及应用
性能与应用:FPD为质量型选择性检测器,主要用于测定含硫、含磷化合物,其信号比碳氢化合物几乎高一万倍。广泛应用于石油产品中微量硫化合物及农药中有机磷化合物的分析。
实验室分析方法氢火焰离子检测器(FID)的基本原理
1、氢火焰检测器是根据色谱流出物中可燃性有机物在氢一氧火焰中发生电离的原理而制成的; 2、由于在火焰附近存在着由收集极和发射极之间所造成的静电场; 3、当被测组分燃烧生成离子,在电场作用下定向移动而形成离子流,经微电流放大器放大,然后到记录仪记录。(目前氢火焰离子检测器的基本原理说法有两种,一种是在
FPD检测器
FPD检测器FPD为火焰光度检测器。是分析S、P 化合物的高灵敏度、高选择性的气相色谱检测器。广泛用于环境、食品中S、P 农药残留物的检测。当含S、P 的化合物进入检测器,在富氢焰(H2 与O2 体积比)中燃烧时,从基态到激发态发出特征光谱,分别发射出(350-480)nm 和(480-600)nm
火焰光度检测器简介
火焰光度检测器(flame photometric detector,FPD)是气相色谱仪用的一种对含磷、含硫化合物有高选择型、高灵敏度的检测器。试样在富氢火焰燃烧时,含磷有机化合物主要是以HPO碎片的形式发射出波长为526nm的光,含硫化合物则以S2分子的形式发射出波长为394nm的特征光。光
火焰光度检测器的原理
含磷或硫的有机化合物在富氢火焰中燃烧时,硫、磷被激发而发射出特征波长的光谱。当硫化物进入火焰,形成激发态的S*2分子,此分子回到基态时发射出特征点蓝紫色光;当磷化物进入火焰,形成激发态的HPO*分子,它回到基态时发射出特征的绿色光(波长为480-560nm,最大强度对应的波长为526nm)。这两
火焰光度检测器的结构
FPD由氢焰部分和光度部分构成。氢焰部分包括火焰喷嘴、遮光罩、点火器等。光度部分包括石英片、滤光片和光电倍增管。
什么是火焰光度检测器
火焰光度检测器(flame photometric detector,FPD)是气相色谱仪用的一种对含磷、含硫化合物有高选择型、高灵敏度的检测器。试样在富氢火焰燃烧时,含磷有机化合物主要是以HPO碎片的形式发射出波长为526nm的光,含硫化合物则以S2分子的形式发射出波长为394nm的特征光。光
火焰光度检测器的原理简介
含磷或硫的有机化合物在富氢火焰中燃烧时,硫、磷被激发而发射出特征波长的光谱。当硫化物进入火焰,形成激发态的S*2分子,此分子回到基态时发射出特征点蓝紫色光;当磷化物进入火焰,形成激发态的HPO*分子,它回到基态时发射出特征的绿色光(波长为480-560nm,最大强度对应的波长为526nm)。这两
关于火焰光度检测器的简介
火焰光度检测器(flame photometric detector,FPD)是气相色谱仪用的一种对含磷、含硫化合物有高选择型、高灵敏度的检测器。试样在富氢火焰燃烧时,含磷有机化合物主要是以HPO碎片的形式发射出波长为526nm的光,含硫化合物则以S2分子的形式发射出波长为394nm的特征光。光
火焰光度法的基本原理
火焰光度法是用火焰作为激发光源的原子发射光谱法.1859年由R.W.E.本生发明,1935年制成第一台火焰光谱光电直读光度计.该法系选择适当的方式将分析试样引入火焰中,依靠火焰(1800-2500℃)的热效应和化学作用将试样蒸发、离子化、原子化和激发发光.根据特征谱线的发射强度I与样品中该元素浓度之
火焰光度法的基本原理
火焰光度计是根据被测元素的原子或离子受火焰激发后能发出其特征波长谱线和依据罗马金公式,对样品中的碱金属及碱土金属元素进行定量分析的仪器。
火焰光度法的基本原理
火焰光度计是根据被测元素的原子或离子受火焰激发后能发出其特征波长谱线和依据罗马金公式,对样品中的碱金属及碱土金属元素进行定量分析的仪器。一、什么是火焰光度计?火焰光度计本身无法得出被测元素的绝对浓度值。必须首先制备标准溶液,进行 标定,绘制标准曲线,然后对未知溶液进行测量。获得仪器显示的读数后,再从
关于火焰光度检测器的原理介绍
火焰光度检测器利用氢扩散火焰,首先通过燃烧分解从色谱柱中流出的含P和S的化合物分子,使之称为碎片,然后把这些碎片激发到高能级,这些激发态的分子随后回到基态,发射出特征的带状光谱。这些发射光通过通带中心在392nm(对于硫)或526nm(对于磷)处的滤光片,用光电倍增管测定其强度。
火焰光度检测器的结构及原理
结构 FPD由氢焰部分和光度部分构成。氢焰部分包括火焰喷嘴、遮光罩、点火器等。光度部分包括石英片、滤光片和光电倍增管。 原理 含磷或硫的有机化合物在富氢火焰中燃烧时,硫、磷被激发而发射出特征波长的光谱。当硫化物进入火焰,形成激发态的S*2分子,此分子回到基态时发射出特征点蓝紫色光;当磷化物
实验室分析方法氢火焰检测器的注意事项
1、离子头绝缘要好,外壳要接地; 2、氢火焰离子化检测器使用温度应大于是100度; 3、离子头的喷嘴和收集极,在使用一定时间后应进行清洗。
实验室分析仪器氢火焰离子检测器(FID)的基本原理
1、氢火焰检测器是根据色谱流出物中可燃性有机物在氢一氧火焰中发生电离的原理而制成的; 2、由于在火焰附近存在着由收集极和发射极之间所造成的静电场; 3、当被测组分燃烧生成离子,在电场作用下定向移动而形成离子流,经微电流放大器放大,然后到记录仪记录。(目前氢火焰离子检测器的基本原理说法有两种,一种是在
气相色谱检测器之火焰光度检测器
气相色谱检测器之火焰光度检测器又称硫磷检测器,是一种高灵敏度、高选择性的质量型检测器。它是应用火焰光度法的原理来检测含硫、磷的有机化合物。FPD对有机硫、磷的检测限比碳氢化合物低一万倍,因此可以排除大量的溶剂峰和碳氢化合物的干扰,非常有利于痕量硫、磷化合物的分析,现已广泛应用于空气和水污染物、农
火焰光度检测器色谱仪简介
火焰光度检测器(flame photometric detector,FPD)是对含磷、含硫的化合物有高选择性和高灵敏度的一种色谱检测器。 当含有硫(或磷)的试样进入氢焰离子室,在富氢-空气焰中燃烧时,有下述反应:RS + 空气 + O2 → SO2 + CO22SO2 + 8H → 2S + 4
气相色谱火焰光度检测器的简介
是利用在一定外界条件下(即在富氢条件下燃烧)促使一些物质产生化学发光,通过波长选择、光信号接收,经放大把物质及其含量和特征的信号联系起来的一个装置。主要由燃烧室、单色器、光电倍增管、石英片(保护滤光片)及电源和放大器等组成。
关于火焰光度检测器的结构原理介绍
1、火焰光度检测器的结构:FPD由氢焰部分和光度部分构成。氢焰部分包括火焰喷嘴、遮光罩、点火器等。光度部分包括石英片、滤光片和光电倍增管。 2、火焰光度检测器的原理: 含磷或硫的有机化合物在富氢火焰中燃烧时,硫、磷被激发而发射出特征波长的光谱。当硫化物进入火焰,形成激发态的S*2分子,此分子
实验室分析仪器火焰光度检测器结构、原理及操作分析
一、FPD的结构FPD的结构如图1所示。可分为气路发光和光接收三部分。气路与FID相同,采用空气从喷嘴中心流出,氢气和氮气预混合后从喷嘴周围流出。这是单火焰的气路结构,其缺点是大量烃类化合物与含S、P的化合物同时流出时,由于火焰条件的短暂改变和火焰内产生不利于激发态生成的碰撞与反应,会使光发射产生猝
实验室分析方法热导检测器(TCD)的基本原理
1、热导检测器是基于不同的物质有不同的热导系数。 2、在未进样时,两池孔的钨丝温度和阻值减小是相等的。 3、在进样时,载气经参比池,而载气带着试样组分流经测量池,由于被组分与载气组成的混合气体的热导系数与载气的热导系数不同。 4、因此测量池中的钨丝温度发生变化使两池孔中的两根钨丝阻值有了差异。 5、
气相色谱火焰光度检测器的工作原理
当含S、P化合物进入氢焰离子室时,在富氢焰中燃烧,有机含硫化合物首先氧化成SO2,被氢还原成S原子后生成激发态的S2*分子,当其回到基态时,发射出350~430nm的特征分子光谱,最大吸收波长为394nm。通过相应的滤光片,由光电倍增管接收,经放大后由记录仪记录其色谱峰。此检测器对含S化合物不成
实验室分析仪器气相色谱仪基础火焰光度检测器
火焰光度检测器(FPD):flame photometric detector. 将含硫或含磷的化合物在富氢火焰中产生的特征波长的光能转化为电信号的检测器。