共振拉曼光谱的特点及缺点

共振拉曼光谱的特点: a,基频的强度可以达到瑞利线的强度。 b,泛频和合频的强度有时大于或等于基频的强度。 c,通过改变激发频率,使之仅与样品中某一物质发生共振,从而选择性的研究某一物质。 和普通拉曼相比,其散射时间短,一般为10-12~10-5S。 共振拉曼光谱的缺点: 需要连续可调的激光器,以满足不同样品在不同区域的吸收。......阅读全文

共振拉曼光谱的特点及缺点

  共振拉曼光谱的特点:  a,基频的强度可以达到瑞利线的强度。  b,泛频和合频的强度有时大于或等于基频的强度。  c,通过改变激发频率,使之仅与样品中某一物质发生共振,从而选择性的研究某一物质。  和普通拉曼相比,其散射时间短,一般为10-12~10-5S。  共振拉曼光谱的缺点:  需要连续可

共振拉曼光谱的缺点

  需要连续可调的激光器,以满足不同样品在不同区域的吸收。

共振拉曼光谱的优缺点

1、共振拉曼光谱的优点:(1)基频的强度可以达到瑞利线的强度。(2)泛频和合频的强度有时大于或等于基频的强度。(3)通过改变激发频率,使之仅与样品中某一物质发生共振,从而选择性的研究某一物质。(4)和普通拉曼相比,其散射时间短,一般为10-12~10-5S。 2、共振拉曼光谱的缺点:需要连续可调的激

共振拉曼光谱的特点

  a,基频的强度可以达到瑞利线的强度。  b,泛频和合频的强度有时大于或等于基频的强度。  c,通过改变激发频率,使之仅与样品中某一物质发生共振,从而选择性的研究某一物质。  和普通拉曼相比,其散射时间短,一般为10-12~10-5S。

拉曼光谱优缺点

拉曼光谱优点:提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量;水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具;拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析,相反,若

拉曼光谱的7大应用及优缺点分析

拉曼光谱技术以其信息丰富、制样简单、水的干扰小等独特优点,在化学、材料、物理、高分子、生物、医药、地质等领域有着广泛的应用。   1、拉曼光谱在化学研究中的应用   拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征

拉曼光谱的7大应用及优缺点分析

  拉曼光谱技术以其信息丰富、制样简单、水的干扰小等独特优点,在化学、材料、物理、高分子、生物、医药、地质等领域有着广泛的应用。  1、拉曼光谱在化学研究中的应用  拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征或特征基团。拉曼位移的大小、

拉曼光谱用于分析的优点和缺点

  优点  1、拉曼光谱用于分析的优点  拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点。  不足  2、拉曼光谱用于分析的不足  (1)拉曼散射面积  (2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等

拉曼光谱用于分析的优点和缺点

  ①拉曼光谱用于分析的优点拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点②拉曼光谱用于分析的不足  (1)拉曼散射面积;  (2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响;  (3)荧光现

拉曼光谱用于分析的优点和缺点

  ①拉曼光谱用于分析的优点拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点②拉曼光谱用于分析的不足  (1)拉曼散射面积;  (2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响;  (3)荧光现

拉曼光谱用于分析的优点和缺点

  ①拉曼光谱用于分析的优点  拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点  ②拉曼光谱用于分析的不足  (1)拉曼散射面积;  (2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响;  (3

拉曼光谱的分析方向和优缺点

拉曼光谱的分析方向拉曼光谱仪分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。拉曼光谱的分析方向有:定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析。结构分析:对光谱谱带的分析,又是进行物质结构分析的基础。定量分析:根据物质对光谱的吸光度的特点,

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波  紫外

紫外拉曼与共振拉曼原理

  荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波

激光共振拉曼光谱法的相关介绍

  激光共振拉曼光谱(RRS)产生激光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,并观察到正常拉曼效应中难以出现的、其强度可与基频相比拟的泛音及组合振动光谱。与正常拉曼光谱相比,共振拉曼光谱灵敏度高,结合表面增强技术,灵敏度已

拉曼光谱仪的特点

分类这种东西跟分类方式有关,以下仅是一种分法现代拉曼光谱分析技术持续发展中,被用来增强灵敏度(表面增强拉曼效应)、改善空间性的分辨率(微拉曼光谱仪),或者取得特殊的分析讯号(共振拉曼光谱)。表面增强拉曼通常以金或银的胶体或者基板上附着金或银的纳米粒子。金或银粒子的表面等离子共振由雷射所激发,其结果产

拉曼光谱仪的特点

分类这种东西跟分类方式有关,以下仅是一种分法现代拉曼光谱分析技术持续发展中,被用来增强灵敏度(表面增强拉曼效应)、改善空间性的分辨率(微拉曼光谱仪),或者取得特殊的分析讯号(共振拉曼光谱)。表面增强拉曼通常以金或银的胶体或者基板上附着金或银的纳米粒子。金或银粒子的表面等离子共振由雷射所激发,其结果产

拉曼光谱仪的特点

分类这种东西跟分类方式有关,以下仅是一种分法现代拉曼光谱分析技术持续发展中,被用来增强灵敏度(表面增强拉曼效应)、改善空间性的分辨率(微拉曼光谱仪),或者取得特殊的分析讯号(共振拉曼光谱)。表面增强拉曼通常以金或银的胶体或者基板上附着金或银的纳米粒子。金或银粒子的表面等离子共振由雷射所激发,其结果产

拉曼光谱的原理特点(二)

特点: (1)避免了荧光干扰; (2)精度高; (3)消除了瑞利谱线; (4)测量速度快。 拉曼光谱的分析方向 拉曼光谱仪分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。 拉曼光谱的分析方向有: 定性分析:不同的物质具有不同的特征光

拉曼光谱的原理特点(一)

昨天咱们讲了紫外分光光度计,今天就说一说拉曼光谱法。 分子振动也可能引起分子极化率的变化,产生拉曼光谱。拉曼光谱不是观察光的吸收, 而是观察光的非弹性散射。非弹性散射光很弱,过去较难观测。激光拉曼光谱的出现使灵敏度和分辨力大大提高,应用日益广泛。拉曼散射效应的进展 1928年,印度物理学家拉

红外与拉曼光谱的特点

1.从本质上面来说,两者都是振动光谱,而且测量的都是基态的激发或者吸收,能量范围都是一样的。2.拉曼是一个差分光谱。形象的来说,可乐的价钱是1毛钱,你扔进去1毛钱,你就能得到可乐,这是红外。可是如果你扔进去1块钱,会出来一瓶可乐和9毛找的钱,你仍旧可以知道可乐的价钱,这就是拉曼。3.光谱的选择性法则

拉曼光谱仪的性能特点

  1. 共焦显微拉曼光学系统  2. 0.8um的影像分辨率  3. Czerny-Turner对称式结构单色仪  4. 实时非侵入与非破坏性检测  5. 无须或极少准备样品  6. 无消耗性化学废弃物  7. 高分辨率  8. 工作波数范围大,最低可探测波长可达538.9nm  9. 可对样品表

拉曼光谱仪的性能特点

  1. 共焦显微拉曼光学系统  2. 0.8um的影像分辨率  3. Czerny-Turner对称式结构单色仪  4. 实时非侵入与非破坏性检测  5. 无须或极少准备样品  6. 无消耗性化学废弃物  7. 高分辨率  8. 工作波数范围大,最低可探测波长可达538.9nm  9. 可对样品表

拉曼光谱仪的性能特点

  1. 共焦显微拉曼光学系统  2. 0.8um的影像分辨率  3. Czerny-Turner对称式结构单色仪  4. 实时非侵入与非破坏性检测  5. 无须或极少准备样品  6. 无消耗性化学废弃物  7. 高分辨率  8. 工作波数范围大,最低可探测波长可达538.9nm  9. 可对样品表

拉曼光谱仪的性能特点

  1. 共焦显微拉曼光学系统  2. 0.8um的影像分辨率  3. Czerny-Turner对称式结构单色仪  4. 实时非侵入与非破坏性检测  5. 无须或极少准备样品  6. 无消耗性化学废弃物  7. 高分辨率  8. 工作波数范围大,最低可探测波长可达538.9nm  9. 可对样品表

拉曼光谱及典型应用

拉曼光谱当光照射到物质上时会发生散射,散射光中除了与激发光波长相同的弹性成分(瑞利散拉曼散射射)外,还有比激发光的波长长的和短的成分,后一现象统称为拉曼效应。由分子振动、固体中的光学声子等元激发与激发光相互作用产生的非弹性散射称为拉曼散射,一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱。由于

拉曼光谱的原理及应用

  拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:  CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。  1.

拉曼光谱的原理及应用

  拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:  CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。1. 含

拉曼光谱

一、拉曼光谱的基本原理用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。1.瑞利散射散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能