实验室分析仪器影响差示扫描量热分析结果的主要因素
差示扫描量热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异,峰的最高温度、形状、面积和峰值大小都会发生一定变化,主要原因是因为热量与许多因素有关,传热情况比较复杂造成的。虽然影响因素很多,但只要严格控制某种条件,仍可获得较好重现性。检测过程中主要影响因素表现在以下几个方面。 一、样品量样品量大小对测量结果有影响,从试验精密度考虑, 应取较大的样品量。样品量的选择还应考虑试样反应热大小, 对反应热较大的试样, 应取较小样品量。一般根据试样情况取3mg~10mg左右较为合适。 二、升温速率升温速率不仅影响峰温位置,而且影响峰面积大小,一般来说,在较快升温速率下峰面积变大,峰变尖锐,但是快升温速率使试样分解偏离平衡条件的程度也大,因而易使基线漂移,更主要的可能导致相邻两个峰重叠,分辨力下降。较慢的升温速率,基线漂移小,使体系接......阅读全文
实验室分析仪器影响差示扫描量热分析结果的主要因素
差示扫描量热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异,峰的最高温度、形状、面积和峰值大小都会发生一定变化,主要原因是因为热量与许多因素有关,传热情况比较复杂造成的。虽然影响因素很多,但只要严格控制某种条件,仍可获得较好重现性
影响差示扫描量热仪测试结果的因素
差示扫描量热法是在程序控制温度下测量输入到物质(试样)和参比物的功率差与温度的关系的一种技术,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度Tg、氧化诱导期OIT、熔融温度、结晶温度、比热容及热焓等。根据测量方法的不同又分为两种类型:功率补偿型和热流型,两种类型的测
差示扫描量热仪的差示扫描量热法介绍
差示扫描量热法 差示扫描量热法(differential scanning calorimetry,DSC),一种热分析法。在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫
差示扫描量热仪的差示扫描量热法的介绍
差示扫描量热法(differential scanning calorimetry,DSC),一种热分析法。在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,
差示扫描量热仪的实验结果解析
测试结果有以下几种情况出现。在测量温度范围内DCS曲线几乎是一条直线,没有峰形呈现,说明样品是惰性的,或者是样品的热稳定性很好,没有发生热反应,这可以通过扩大温度范围和增大试样质量来检查是否有其他效应发生。若DSC曲线明显偏离基线,出现一个单独的吸热峰(峰形向下)或放热峰(峰形向上),这说明试样发生
差示扫描量热仪
差示扫描量热仪的基本原理 差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;
差示扫描量热仪
差示扫描量热仪的基本原理 差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;
差示扫描量热法
基本简介差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生
差示扫描量热法
基本简介差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生
差示扫描量热仪
型号:HSC-1概述差示扫描量热法(热流式DSC)作为一种可控程序温度下的热效应的经典热分析方法,在当今各类材料与化学领域的研究开发、工艺优化、质检质控与失效分析等各种场合早已得到了广泛的应用。利用DSC方法,我们能够研究无机材料的相转变、高分子材料熔融、结晶过程、药物的多晶型现象、油脂等食品的固/
差示扫描量热法
差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当
影响差示扫描量热仪测试的因素
分析了样品质量、升温速率、气体流量、样品粒径及样品位置等对DSC测试的影响。结果表明:样品质量对测试结果有一定的影响,气体流量、样品粒径及位置对测试结果影响较小,而升温速率相对其他影响因素对终的结果有较大的影响。对试样进行连续测试及放置不同时间测试,DSC仪器具有良好的重现性及稳定性。后,通过对比
差示扫描量热仪热分析仪器氧化诱导时间测试
差示扫描量热仪差示扫描量热仪应用范围有:对材料氧化诱导时间的测定,高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度等。实验对象为:固态、液态、粘稠试样,除了气体。将试样和参比物分别放入坩埚,置于炉中进行程序加热,改变试
实验室分析仪器差示扫描量热法仪的分类
1. 功率补偿型DSC2. 热流型DSCDSC是动态量热技术,对DSC仪器重要的校正就是温度校正和量热校正。
实验室分析仪器差示扫描量热仪的主要分类
差示扫描量热仪(differential scanning calorimeter)主要有三种:功率补偿式差式扫描量热仪、热通量式差式扫描量热仪和热流式差示扫描量热仪。
热重差示扫描量热分析方法的功能
热重差示扫描量热分析方法的功能如下:测量样品的热重,测量样品的热流。1、测量样品的热重:TGA可以测量样品随温度的热重变化,从而确定样品的热稳定性、脱水、脱气、热解等反应过程的温度和速率。2、测量样品的热流:DSC可以测量样品吸放热量,从而确定样品的热容、热化学反应、熔融转化等热性质。
差示扫描量热法原理
DSC的基本原理差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的
差示扫描量热法原理
DSC的基本原理差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的
介绍差示扫描量热仪
差示扫描量热仪:在严格控制程序温度下,测量输入(或取出)试样和参比物的平衡热量差的仪器。 差示扫描量热仪,测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交
DSC差示扫描量热仪
DSC测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性:如玻璃化转变温度。冷结晶、相转变、熔融、结晶、热稳定性、固化/交联、氧化诱导期等,都是DSC的研发领域。原理:差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率
差示扫描量热仪简介
简介 差示扫描量热仪 ( Differential Scanning Calorimeter),测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,
差示扫描量热法原理
DSC的基本原理差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的
DSC差示扫描量热法
示扫描量热法(differential scanning calorimetry)这项技术被广泛应用于一系列应用,它既是一种例行的质量测试和作为一个研究工具。该设备易于校准,使用熔点低,是一种快速和可靠的热分析方法。差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的
介绍差示扫描量热仪
差示扫描量热仪:在严格控制程序温度下,测量输入(或取出)试样和参比物的平衡热量差的仪器。 差示扫描量热仪,测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/
差示扫描量热法原理
差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当
差示扫描量热法原理
DSC的基本原理差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的
DSC差示扫描量热仪
DSC测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性:如玻璃化转变温度。冷结晶、相转变、熔融、结晶、热稳定性、固化/交联、氧化诱导期等,都是DSC的研发领域。原理:差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率
差示扫描量热法原理
DSC的基本原理差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的
差示扫描量热仪(DSC)
由于采用了模块化设计,DSC仪器作为梅特勒-托利多热分析高端或超越系列的一个组成部分,是人工或自动操作的最佳选择,广泛应用于质量保证和生产领域的学术研究和产业化开发。利用市场上最灵敏的DSC测量样品-DSC是研究各种材料和效果的理想选择DSC采用创新的、配备120对热电偶的DSCZL传感器,确保具有
实验室分析仪器差示扫描量热仪主要特点
1.全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性。2.数字式气体质量流量计,精确控制吹扫气体流量,数据直接记录在数据库中。3.仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便。