Antpedia LOGO WIKI资讯

实验室分析方法热分析联用技术TGDSC联用

在程序控制温度下,对一个试样同时采用两种或多种分析技术,TG-DTA、TG-DSC应用最广泛,可以在程序控温下,同时得到物质在质量与焓值两方面的变化情况。1)TG-DTA联用主要优点:能方便区分物理变化与化学变化;便于比较、对照、相互补充;可以用一个试样、一次试验同时得到TG与DTA数据,节省时间;测量温度范围宽:室温~1500℃;缺点:同时联用分析一般不如单一热分析灵敏,重复性也差一些。因为不可能满足TG和DTA所要求的最佳实验条件。TG、DTA技术对试样量要求不一样,TG量稍多一些好,可以得到相对较高的检测精度,而DTA试样少一些好,这样试样中温度分布均匀,反应易进行,可得到更尖锐的峰形和较准确的峰温。只能折衷选择最佳量。 根据物理或化学过程中所产生的重量和能量的变化情况,TG和DTA对反应过程可作出大致的判断: 测试条件:试样量10.1mg,参比物:A12O3,升温速率10K/min,气氛:空气&nbs......阅读全文

实验室分析方法--热分析联用技术-TG-DSC联用

在程序控制温度下,对一个试样同时采用两种或多种分析技术,TG-DTA、TG-DSC应用最广泛,可以在程序控温下,同时得到物质在质量与焓值两方面的变化情况。1)TG-DTA联用主要优点:能方便区分物理变化与化学变化;便于比较、对照、相互补充;可以用一个试样、一次试验同时得到TG与DTA数据,节省时间;

实验室分析方法--热分析联用技术-TG-DSC联用

在仪器构造和原理上与TG-DTA联用相类似;具有功率补偿控制系统,可定量量热;在TG-DSC仪中DSC的灵敏度要降低一些;与TG-DTA一样广泛应用于热分解机理的研究。

实验室分析方法--热分析联用技术-间歇联用技术

在程序控制温度下,对一个试样采用两种或多种分析技术,仪器的联接形式与串联联用相同,但第二种分析技术是不连续地从第一种分析仪取样。1)热分析和气相色谱的联用与气相色谱联用的热分析技术有TG、 DTA和DSC。既可得到热分析曲线又可分析相应的分解产物,对研究热分解反应机理极为有用。由于热分析是一种连续的

实验室分析方法--热分析联用技术-串接联用技术

在程序控制温度下,对一个试样同时采用两种或多种分析技术,第二种分析仪器通过接口与第一种分析仪器相串联,例如TG-MS(质谱)的联用。1)TG-MS联用技术   2)热分析与IR联用技术采用红外光谱法对由多组分共混、共聚或复合成的材料及制品进行研究时,经常会遇到这些材料中混合组分的红外吸收光谱带位置很

实验室分析方法--热分析联用技术-同时联用技术

在程序控制温度下,对一个试样同时采用两种或多种分析技术,TG-DTA、TG-DSC应用最广泛,可以在程序控温下,同时得到物质在质量与焓值两方面的变化情况。1)TG-DTA联用主要优点:能方便区分物理变化与化学变化;便于比较、对照、相互补充;可以用一个试样、一次试验同时得到TG与DTA数据,节省时间;

实验室分析方法--热分析联用技术-TG-DTA联用主要优点

主要优点:能方便区分物理变化与化学变化;便于比较、对照、相互补充;可以用一个试样、一次试验同时得到TG与DTA数据,节省时间;测量温度范围宽:室温~1500℃;

实验室分析方法--热分析联用技术-TG-DTA联用主要缺点

同时联用分析一般不如单一热分析灵敏,重复性也差一些。因为不可能满足TG和DTA所要求的最佳实验条件。

实验室分析方法--热分析联用技术的分类

热分析联用技术分为三类,即同时联用技术、串接联用技术、间歇联用技术。

实验室分析仪器--热裂解气质联用技术优势分析析

高聚物几乎没有什么蒸气压,因而难以想象它能通过GC进行质谱分析。但是,可以通过高温裂解的办法使高聚物裂解为可挥发的小分子,然后导入到 GC/MS系统进行分析。依赖裂解产物的色谱图剖面和色谱图上由各峰的质谱图所确定的产物归属来达到对高聚物的结构测定。实际上,由于热裂解(Py-GC)具有的可重复性,能较

实验室分析方法--气相色谱-质谱联用技术技术原理与特点

气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。保留时间是气象色谱进行定性的依据,而色谱峰高或峰面积是定量的手段,所以气相色谱对复杂的混合物可以进行有效地定性定量分析。其特点在于高效的分离能力和良好的灵敏度