科研人员制备出双层硼烯

二维材料具有原子尺度的厚度和独特的性能,在纳米电子器件中颇具应用潜力而受到关注。新产业的萌发和快速发展来源于新材料的发现,不断发现新的二维材料、丰富和补充二维材料的性质,是二维材料研究领域的重要课题。硼烯是指由硼元素构成的二维平面结构,由于硼原子相对于碳原子缺少一个价电子,使硼原子之间的化学键较为复杂,理论上形成的平面结构是以三角形密堆积晶格为基础的孔洞型结构,而根据孔洞不同的排列方式,导致多样化的硼烯原子结构,被认为是结构最丰富的单元素二维材料之一。关于硼烯的理论研究早已开始,但硼烯没有对应的层状体材料,不能像石墨烯那样通过机械剥离获得,且硼具有高熔点、低蒸汽压的特点,因而硼烯的合成一直面临挑战。2016年,中国科学院物理研究所/北京凝聚态物理国家研究中心表面实验室SF9组利用超高真空分子束外延的手段直接进行单原子层构筑的方法,在Ag(111)衬底上获得了理论上的硼烯【Nature Chemistry 8, 564 ......阅读全文

宁波材料所发明一种高效率制备“白色石墨烯”的方法

  六方氮化硼纳米片,也称“白色石墨烯”。由于结构相似,石墨烯和氮化硼纳米片具有类似性能,如优异的机械和热性能,尤其是导热性能。虽然石墨烯在导热应用方面已开展了广泛研究,但因其导电性限制了石墨烯在绝缘领域的应用。相比之下,氮化硼纳米片具有良好的电绝缘性,因此特别适用于导热绝缘领域中的散热材料。虽然氮

六方氮化硼石墨烯已具备实用价值

  随着人们生活需求的日益增长,各类电子产品的性能及功能得到了极大提高。同时,传统电子材料的物理限制也因此逐渐显现,人们愈加迫切地需要具备更加强大性能的新一代电子原材料作为电子工业继续腾飞的基石。  据物理学家组织网9月15日报道,英国曼彻斯特大学的研究人员在《自然·纳米技术》发表论文称,他们利用二

实现六角氮化硼表面石墨烯边界调控

  近日,《纳米尺度》(Nanoscale)杂志以《六角氮化硼表面石墨烯晶畴边界调控》(Edge Control of Graphene Domains Grown on Hexagonal Boron Nitride)为题,在线刊登了中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室陈

物理所石墨烯摩尔超晶格研究取得系列进展

  最近,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)纳米物理与器件实验室在《自然•材料》、《自然•纳米技术》、《自然•物理》、《自然•通讯》刊登了系列研究成果。针对石墨烯/氮化硼异质结构,他们系统研究了氮化硼基底调制下的摩尔超晶格以及相关物理现象,为石墨烯能带及电子学性质调控提供了新思路。

新型碳基二维半导体材料基本物性研究获进展

  以石墨烯为代表的碳基二维材料自发现以来受到了广泛关注。然而,石墨烯的零带隙半导体性质严重限制了其在微电子器件领域的应用。针对该情况,中国科学院上海微系统与信息技术研究所研究人员等自2013年开展新型碳基二维半导体材料的制备研究,2014年1月成功制备了由碳和氮原子构成的类石墨烯蜂窝状无孔有序结构

石墨烯:未来材料宠儿

今年3月,浙江大学利用石墨烯等材料制成世界“最轻材料”。   想在一秒钟内下载一部高清电影吗?石墨烯调制器的问世或许能让这个愿望得以实现。   美国华裔科学家张翔教授的研究团队用石墨烯研制出一款调制器,这个只有头发丝四百分之一细的光学调制器具备的高速信号传输能力,有望将互联网传输速度提高一万倍。

新型单元素二维原子晶体材料黑磷或将成“第二个石墨烯”

  科技日报讯 (记者马爱平)记者近日从深圳大学获悉,由深圳大学——新加坡国立大学光电协同创新中心教授张晗带领的深圳市孔雀创新团队首次研发了基于黑磷的光纤锁模激光器,得到了超短脉冲激光的输出信号。  近年来,在石墨烯产业蓬勃发展之际,另一种新型单元素二维原子晶体材料——黑磷被发现。与石墨烯类似,黑磷

“二维/三维石墨烯材料与光电器件可控制备”课题技术验收

  石墨烯具有优异的光学和电学性质,其高光学透过率和超高载流子迁移率等特性及在新型光电器件中具有很好的应用前景。  近日,由重庆墨希科技有限公司、中国科学院重庆绿色智能技术研究院、重庆莱宝科技有限公司和重庆大学等单位共同承担的863计划“二维/三维石墨烯材料与光电器件的可控制备及示范应用(2015A

美研究发现添加人造边缘可让二硫化钼原子层整齐生长

  据物理学家组织网近日报道,美国莱斯大学和橡树岭国家实验室(ORNL)的科学家合作开发出一种新方法,可以控制二硫化钼(MDS)原子层整齐一致地生长,借此朝制造二维电子设备前进了一步。相关研究发表在本周出版的《自然·材料学》杂志上。   半导体二硫化钼是制造功能性二维电子元件所需的三种材料中的一种

我国科学家创造出无摩擦力的冰

“我们发现如果把冰结在石墨烯等特定材料上,只让其生长一两个分子层,我们称其为二维冰,那么冰与材料表面之间的摩擦力就会消失。”6月14日,北京大学物理学院量子材料科学中心、北京怀柔综合性国家科学中心轻元素量子材料交叉平台教授江颖告诉科技日报记者。相关研究成果当日发表于国际顶级学术期刊《科学》。“人们很

AFM再立功!科学家们发现了第一种二维冰相

  生物抗冻蛋白如何抗结冰,冰川之间的相对滑移、大气臭氧的降解催化,都与冰的结构和成核生长密切相关。  经过近百年的探索,人们已经发现了冰的18种三维晶体结构,其中自然界最常见的就是六角形的冰相。然而,是否有稳定存在的二维冰,学术界一直有很大争议。  近日,北京大学、美国内布拉斯加大学林肯分校以及中

新型碳基二维半导体材料基本物性研究获进展

  以石墨烯为代表的碳基二维材料自发现以来受到了广泛关注。然而,石墨烯的零带隙半导体性质严重限制了其在微电子器件领域的应用。针对该情况,中国科学院上海微系统与信息技术研究所研究人员等自2013年开展新型碳基二维半导体材料的制备研究,2014年1月成功制备了由碳和氮原子构成的类石墨烯蜂窝状无孔有序结构

自建测试表征技术平台,纳米中心在这项研究中获新进展

  近日,国家纳米科学中心张忠研究员、刘璐琪研究员团队在范德华界面力学行为研究方面取得重要进展。相关研究成果以“Elastocapillary cleaning of twisted bilayer graphene interfaces”在线发表于Nature Communications (12

中国留学生小姐姐发了一篇《Science》封面论文!

  颜值和实力双爆表!  二维结构的硼烯或硼烷多晶型物凭借其各向异性的金属性、电子效应和多样的超晶格结构而备受关注。然而,硼烷在空气中会迅速氧化,这使其只能在超高真空条件下进行实验与表征,严重阻碍了其实际应用。对此,化学钝化是抑制电子材料发生环境氧化的常用手段。第一性原理计算表明,硼烯也可以通过表面

首现弱磁场下扭曲双层石墨烯奇异分数态

  美国哈佛大学与麻省理工学院的研究人员合作,首次在弱磁场下观察到扭曲的双层石墨烯的奇异分数态。这项研究发表在15日的《自然》杂志上,为未来的量子设备和应用铺平了道路。  奇异的量子粒子和现象只有最极端的条件才会出现。换句话说,必须具备极低的温度或极高的磁场。人们已经对室温超导做了很多研究,但在弱磁

研究揭示铜上双层石墨烯的双面各异掺杂机制

  松山湖材料实验室-北京大学教授刘开辉与合作者研究揭示了铜上双层石墨烯的双面各异掺杂机制,解决了原子级石墨烯防腐技术易受界面扩散和电化学腐蚀侵害的难题,成功实现了对铜箔的超高效防腐。近日,相关成果在线发表于《自然-通讯》。  记者获悉,该技术可在室温下保护铜箔达5年以上、80 ℃水中浸泡保护铜达1

研究揭示铜上双层石墨烯的双面各异掺杂机制

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512786.shtm松山湖材料实验室-北京大学教授刘开辉与合作者研究揭示了铜上双层石墨烯的双面各异掺杂机制,解决了原子级石墨烯防腐技术易受界面扩散和电化学腐蚀侵害的难题,成功实现了对铜箔的超高效防腐。近

弱磁场下扭曲双层石墨烯奇异分数态首现

  美国哈佛大学与麻省理工学院的研究人员合作,首次在弱磁场下观察到扭曲的双层石墨烯的奇异分数态。这项研究发表在15日的《自然》杂志上,为未来的量子设备和应用铺平了道路。  奇异的量子粒子和现象只有最极端的条件才会出现。换句话说,必须具备极低的温度或极高的磁场。人们已经对室温超导做了很多研究,但在弱磁

科研人员发现近室温制备范德华块体材料新方法

范德华块体材料,如六方氮化硼和石墨,在导热和高温结构材料等领域有重要应用。然而这类范德华块体材料通常需要在高于1000摄氏度的高温下烧结制备、能耗巨大。3月15日,清华大学深圳国际研究生院与中国科学院深圳先进技术研究院、中国科学院金属研究所、深圳理工大学(筹)合作团队的成果发表于《自然—材料》。研究

科研人员发现近室温制备范德华块体材料新方法

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519360.shtm范德华块体材料,如六方氮化硼和石墨,在导热和高温结构材料等领域有重要应用。然而这类范德华块体材料通常需要在高于1000摄氏度的高温下烧结制备、能耗巨大。3月15日,清华大学深圳国际研究

关键一步!超高质量石墨烯纳米带制备迎来突破

  3月28日,上海交通大学物理与天文学院教授史志文、以色列特拉维夫大学教授Michael Urbakh、深圳先进技术研究院教授丁峰和武汉大学教授欧阳稳根合作,开发了一种生长石墨烯纳米带的全新方法,实现超高质量石墨烯纳米带在氮化硼层间的嵌入式生长,形成“原位封装”的石墨烯纳米带结构,并演示了所生长的

关键一步!超高质量石墨烯纳米带制备迎来突破

3月28日,上海交通大学物理与天文学院教授史志文、以色列特拉维夫大学教授Michael Urbakh、深圳先进技术研究院教授丁峰和武汉大学教授欧阳稳根合作,开发了一种生长石墨烯纳米带的全新方法,实现超高质量石墨烯纳米带在氮化硼层间的嵌入式生长,形成“原位封装”的石墨烯纳米带结构,并演示了所生长的石墨

“天才少年”曹原带你领略21诺奖材料的火爆

  石墨烯又被称为“黑金”、“新材料之王”,被誉为改变21世纪的“神奇材料”,不仅在航空航天、太阳能利用、纳米、电子学、生物医疗、复合型材料等领域有广泛运用,而且在我们服饰、日用品等也独具商业应用潜能。2010年诺贝尔物理学奖授予对石墨烯研究做出杰出贡献的英国曼彻斯特大学的科学家安德烈·盖姆和康斯坦

半导体所等在转角双层MoS2的moiré声子研究中取得进展

  基于二维材料的范德瓦尔斯异质结(vdWHs)可以通过化学气相沉积(CVD)或者干/湿转移法制备。它们通常具有明显且高质量的二维界面,为研究界面相关的性质提供了一个优质平台。另外,vdWHs中子系统成分、样品厚度以及界面旋转角的多样选择也为操控它们的光学和电学性质提供了更多自由度。其中,由于单层过

揭开了二维材料中自旋结构的秘密

  二十年来,物理学家一直试图直接操纵石墨烯等二维材料中的电子自旋。这样做可以在蓬勃发展的二维电子学世界中带来关键性的进展,在这个领域中,超快、小型和灵活的电子设备会根据量子力学进行计算。  研究人员发现了一种新的实验技术来研究二维量子材料中的电子自旋特性,克服了一个长期的挑战,并有可能使基于这些材

二维原子晶体首现四角形结构

  中国南京航空航天大学纳米科学研究所博士张助华、教授郭万林与美国莱斯大学机械工程系讲习教授Boris I. Yakobson合作,通过大规模基于第一原理的原子结构搜索,发现单原子层碳化钛(TiC)二维原子晶体因为其独特的原子杂化机制而具有高度稳定的四角形结构,有关这一全新的二维原子晶

天才少年曹原发第9篇Nature

95后天才少年曹原此前因连续在国际顶刊发文,被称为“石墨烯驾驭者”,备受国内外学术圈关注。澎湃新闻记者查询发现,曹原及合作者今年8月21日在《Nature》发文《On-chip multi-degree-of-freedom control of two-dimensional materials》

二维半导体材料家族又有“小鲜肉”

  据美国犹他大学官网消息,该校工程师最新发现一种新型二维半导体材料一氧化锡(SnO),这种单层材料的厚度仅为一个原子大小,可用于制备电子设备内不可或缺的晶体管。研究人员表示,最新研究有助于科学家们研制出运行速度更快且能耗更低的计算机和包括智能手机在内的移动设备。  一氧化锡这个“小鲜肉”由犹他大学

石墨烯获得热灵敏度新属性-或改变人们工作娱乐方式

  在长达4年的时间里,美国两名科学家一直在尝试对石墨烯进行修改,让其拥有热灵敏度,用于红外线成像设备内。目前,他们成功研制出拥有磁性、光学、电学以及热属性的新材料,可广泛应用于军用护目镜、手机照相机、光电探测器以及晶体管内,还有望改变人们的工作和娱乐方式。  石墨烯是一种比头发丝细100万倍的材料

中国科大通过压力调控首次观测到石墨烯/六方氮化硼二维莫尔超晶格中三级能隙

  中国科学技术大学张增明教授、乔振华教授、秦维教授等人组成的联合团队在二维莫尔超晶格的量子调控研究中取得突破性进展。该团队自主研发了一套适用于极高压力的范德华异质结量子输运测量技术,并以石墨烯/六方氮化硼(h-BN)莫尔超晶格为平台,实验证明了通过压力可大幅增强莫尔势,首次观测到理论预言的“三级能