研究揭示铜上双层石墨烯的双面各异掺杂机制
松山湖材料实验室-北京大学教授刘开辉与合作者研究揭示了铜上双层石墨烯的双面各异掺杂机制,解决了原子级石墨烯防腐技术易受界面扩散和电化学腐蚀侵害的难题,成功实现了对铜箔的超高效防腐。近日,相关成果在线发表于《自然-通讯》。 记者获悉,该技术可在室温下保护铜箔达5年以上、80 ℃水中浸泡保护铜达100分钟以上、200 ℃下保护铜箔达1000小时以上,达到了工信部《重点新材料首批次应用示范指导目录》中要求的1000倍,有望拓展铜在高温、高湿等极端环境下的应用前景。双层石墨烯覆盖铜的超高效抗腐蚀性能。研究团队 供图 铜因其优良的物理性质(高导电性、高导热性等)而广泛应用于电力电子、半导体工业之中。但是,铜易受腐蚀的特性极大限制了其高端应用的开发。目前,人们普遍使用传统的有机涂层法或牺牲阳极法等对铜进行保护,然而这些方法通常依赖于较厚的涂层,难以满足高端器件微型化的需要。 石墨烯因在单原子层厚度上具备优异的防渗透能力和极高的化学......阅读全文
研究实现AB堆垛双层石墨烯快速生长
中科院上海微系统所石墨烯研究团队采用铜蒸气辅助,在Cu-Ni合金衬底上实现了AB堆垛双层石墨烯(ABBG)的快速生长,典型单晶畴尺寸约300微米,生长时间约10分钟,速度比现有报道提高约一个数量级。相关成果近日在线发表于《微尺度》杂志。 ABBG可通过电场产生可调带隙,对石墨烯在逻辑器件及光电
天然双层石墨烯内发现新奇量子效应
由德国哥廷根大学领导的一个国际研究团队在最新一期《自然》杂志上发表论文称,他们在对天然双层石墨烯开展的高精度研究中,发现了新奇的量子效应,并从理论上对其进行了解释。这一系统制备简单,为载荷子和不同相之间的相互作用提供了新见解,有助于理解所涉及的过程,促进量子计算机的发展。 2004年,两位英国
首现弱磁场下扭曲双层石墨烯奇异分数态
美国哈佛大学与麻省理工学院的研究人员合作,首次在弱磁场下观察到扭曲的双层石墨烯的奇异分数态。这项研究发表在15日的《自然》杂志上,为未来的量子设备和应用铺平了道路。 奇异的量子粒子和现象只有最极端的条件才会出现。换句话说,必须具备极低的温度或极高的磁场。人们已经对室温超导做了很多研究,但在弱磁
研究揭示铜上双层石墨烯的双面各异掺杂机制
松山湖材料实验室-北京大学教授刘开辉与合作者研究揭示了铜上双层石墨烯的双面各异掺杂机制,解决了原子级石墨烯防腐技术易受界面扩散和电化学腐蚀侵害的难题,成功实现了对铜箔的超高效防腐。近日,相关成果在线发表于《自然-通讯》。 记者获悉,该技术可在室温下保护铜箔达5年以上、80 ℃水中浸泡保护铜达1
研究揭示铜上双层石墨烯的双面各异掺杂机制
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512786.shtm松山湖材料实验室-北京大学教授刘开辉与合作者研究揭示了铜上双层石墨烯的双面各异掺杂机制,解决了原子级石墨烯防腐技术易受界面扩散和电化学腐蚀侵害的难题,成功实现了对铜箔的超高效防腐。近
弱磁场下扭曲双层石墨烯奇异分数态首现
美国哈佛大学与麻省理工学院的研究人员合作,首次在弱磁场下观察到扭曲的双层石墨烯的奇异分数态。这项研究发表在15日的《自然》杂志上,为未来的量子设备和应用铺平了道路。 奇异的量子粒子和现象只有最极端的条件才会出现。换句话说,必须具备极低的温度或极高的磁场。人们已经对室温超导做了很多研究,但在弱磁
研究发现利用硅烯插层打开外延生长的双层石墨烯能隙
石墨烯因其独特的晶格结构而具有诸多优异性能,但其零能隙特征极大地限制了它在电子学器件上的应用。近年来,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件重点实验室研究员、中科院院士高鸿钧带领的研究团队在石墨烯及类石墨烯二维原子晶体材料的制备、物性调控及应用等方面开展研究,取得了一系列
上海微系统所实现AB堆垛双层石墨烯的快速生长
在02国家重大专项的支持下,中国科学院上海微系统与信息技术研究所在石墨烯研究中取得新进展:采用铜蒸气辅助,在Cu-Ni合金衬底上实现AB堆垛双层石墨烯(ABBG)的快速生长,典型单晶畴尺寸约300微米,生长时间约10分钟,速度比现有报道提高约一个数量级。研究论文于2月24日在small 上在线发
超显微镜观察到锂离子在双层石墨烯中迁移
德国斯图加特马普固态研究所和乌尔姆大学的科学家使用超显微镜(SALVE),观察到以原子分辨率显示的锂离子在电化学充放电过程中的表现,证明了在单个纳米电池中双层石墨烯发生的可逆锂离子吸收。研究成果发表在最新一期的《自然》杂志上。 斯图加特马普固态研究所物理学家于尔根·斯迈特介绍说,研究显示“纯碳
氧化石墨烯和石墨烯性能的区别
氧化石墨烯和石墨烯性能的区别采用改进的Hummers法制备了氧化石墨烯,将其采用水合肼还原获得石墨烯,以氧化石墨烯和石墨烯为吸附剂,分别采用透射电镜(TEM),傅里叶变换红外光谱(FT-IR),拉曼光谱(RS)和X射线衍射光谱(XPS)对阴阳离子的不同吸附性能进行了分析表征.结果表明:两吸附剂对罗丹
石墨烯检测方法大汇总,石墨烯快速检测
超全面石墨烯检测方法大汇总,看完就是石墨烯检测专家了! 2004年,康斯坦丁博士通过胶带从石墨上分离出石墨烯这种“神器的材料”,它的出现在全世界范围内引起了极大轰动…… 石墨烯具有非同寻常的导电性能、极低的电阻率极低和极快的电子迁移的速度、超出钢铁数十倍的强度,极好的透光性……这些优异的性能
北京石墨烯研究院石墨烯晶元、烯薄膜设备采购公告
国信招标集团股份有限公司受北京石墨烯研究院委托,根据《中华人民共和国政府采购法》等有关规定,现对北京石墨烯研究院2018年石墨烯晶元批量制备设备和高质量石墨烯薄膜批量制备设备采购项目进行公开招标,欢迎合格的供应商前来投标。 项目名称:北京石墨烯研究院2018年石墨烯晶元批量制备设备和高质量石墨
石墨烯怎么制作
石墨烯制作方法:一、机械剥离法机械剥离法是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料的方法。这种方法操作简单,得到的石墨烯通常保持着完整的晶体结构。2004年,英国两位科学使用透明胶带对天然石墨进行层层剥离取得石墨烯的方法,也归为机械剥离法。二、氧化还原法氧化还原法是通过使用硫酸、硝酸
石墨烯表征手段
石墨烯的表征主要分为图像类和图谱类图像类以光学显微镜透射电镜TEM扫描电子显微镜、SEM和原子力显微分析AFM为主而图谱类则以拉曼光谱Raman红外光谱IRX射线光电子能谱、XPS和紫外光谱UV为代表其中TEM、SEM、Raman、AFM和光学显微镜一般用来判断石墨烯的层数而IRX、XPS和UV则可
石墨烯和石墨的区别,联系
石墨烯和石墨的区别如下:一、性质不同1、石墨烯:一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。2、石墨:是碳的一种同素异形体。二、用处不同1、石墨烯:具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料
打开石墨烯带隙,开启石墨烯芯片制造领域大门
天津大学纳米颗粒与纳米系统国际研究中心的马雷教授团队攻克了长期以来阻碍石墨烯电子学发展的关键技术难题,在保证石墨烯优良特性的前提下,打开了石墨烯带隙,成为开启石墨烯芯片制造领域大门的重要里程碑。该研究成果论文《碳化硅上生长的超高迁移率半导体外延石墨烯》1月3日在线发表于国际期刊《自然》。 据介
中国首家石墨烯上市企业诞生-石墨烯产业“梦之队”崛起
2014年11月12日,常州第六元素材料科技股份有限公司在北京成功进入“新三板”上市,成为国内首家石墨烯上市企业。 2013年2月,诺奖得主康斯坦丁·诺沃肖洛夫爵士在中国国务院发展研究中心,接受江南石墨烯研究院名誉理事长冯冠平馈赠由中国制造的全球首款石墨烯触屏手机。 ■创新驱动发展 “这
石墨烯新技术“惊”现中国国际石墨烯创新大会
在中国国际石墨烯创新大会上,国内多家公司和机构讨论了利用石墨烯技术取代现有的硅基芯片,并创建了一个石墨烯铜创新联合体来攻关这一技术。据了解,石墨烯的电子迁移率远高于硅基材料,其性能表现将远远超过现有的硅基芯片,同时能效表现也相当出色,不过目前该芯片技术距离量产应用还有一定距离,科学家一直在研究大规模
石墨烯材料新时代兴起-抓住石墨烯发展的重大机遇
在当今的中国与世界,关于石墨烯可能引发的材料革命乃至新技术革命讨论非常热烈。最近,我到北京、上海、广州、深圳、江苏、浙江、黑龙江、山东、陕西和中科院、清华大学等地方和研究机构对石墨烯进行了调研。石墨烯具有非常大的发展潜力和应用前景,我们必须统筹规划,精心布局,紧紧抓住石墨烯研发和产业化所带来的重
石墨烯和石墨有什么区别
人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯 石墨烯出现在实验室中是在2004年,当时,英国的两位科学家安德烈·杰姆和克斯特亚·诺沃塞洛夫发现他们能用一种非常简
科研人员制备出双层硼烯
二维材料具有原子尺度的厚度和独特的性能,在纳米电子器件中颇具应用潜力而受到关注。新产业的萌发和快速发展来源于新材料的发现,不断发现新的二维材料、丰富和补充二维材料的性质,是二维材料研究领域的重要课题。硼烯是指由硼元素构成的二维平面结构,由于硼原子相对于碳原子缺少一个价电子,使硼原子之间的化学键较为复
我国研究团队制备出双层硼烯
二维材料具有原子尺度的厚度和独特的性能,在纳米电子器件中颇具应用潜力而受到关注。新产业的萌发和快速发展来源于新材料的发现,不断发现新的二维材料、丰富和补充二维材料的性质,是二维材料研究领域的重要课题。硼烯是指由硼元素构成的二维平面结构,由于硼原子相对于碳原子缺少一个价电子,使硼原子之间的化学键较
石墨烯电池成功未央
近日,一种名为“烯王”的电池问世,该生产公司称其为石墨烯基锂电池。与普通电池相比,在满足5C(C表示电池充放电时电流大小的比率即倍率)条件下,石墨烯基锂离子电池可以实现15分钟内快速充放电。 此前媒体报道的资料显示,该产品的石墨烯基锂离子电芯主要为18650圆柱电芯,正极采用石墨烯/磷酸铁锂
石墨烯:未来材料宠儿
今年3月,浙江大学利用石墨烯等材料制成世界“最轻材料”。 想在一秒钟内下载一部高清电影吗?石墨烯调制器的问世或许能让这个愿望得以实现。 美国华裔科学家张翔教授的研究团队用石墨烯研制出一款调制器,这个只有头发丝四百分之一细的光学调制器具备的高速信号传输能力,有望将互联网传输速度提高一万倍。
什么是石墨烯电池?
石墨烯电池,是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种惟有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。利用锂离子在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出的一种新能源电池。由于高导电性、高强度、超轻薄等特性,石墨烯在航天范畴的使用优点也是极为突出的。
如何表征石墨烯层数?
表征石墨烯的手段主要有透射电子显微镜(TEM)、X射线衍射(XRD)、紫外光谱(UV)、原子力显微镜(AFM)、拉曼光谱(RAMAN)、扫描隧道显微镜(STM)及光学显微镜等。其中,XRD和UV均可对石墨烯的结构进行表征,主要用来监控石墨烯的合成过程;而表征石墨烯的层数可以采取的手段有TEM、RAM
AFM表征石墨烯原理
AFM可用于了解石墨烯细微的形貌和确切的厚度信息,属于扫描探针显微镜,它利用针尖和样品之间的相互作用力传感到微悬臂上,进而由激光反射系统检测悬臂弯曲形变,这样就间接测量了针尖样品间的作用力从而反映出样品表面形貌。因此,表征方法主要表征片层的厚度、表面起伏和台阶等形貌,及层间高度差测量。原子力显微技术
石墨烯主要制备方法
1、微机械剥离法方法:用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。缺点:产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,不能满足工业化需求。
石墨烯乳液密度测试
含石墨烯的乳液主要包括以石墨烯为主的烯乳液,其利用石墨独有的特点与碳元素的融合,为乳液提供更优良的品质和更广泛的用途。石墨烯乳液通常需要进行液体密度的测试来加以控制品质。行业内的测试仪就是群隆的石墨烯乳液密度测试仪了。石墨烯乳液密度测试步骤1、将液体专用工字架放在称重台上,把挂钩钩在工字架顶端上,按
石墨烯:接棒硅时代?
石墨烯是21世纪最受期待的“神奇材料”,一经问世便受到科学界的广泛关注。而真正把它带入人们视野的是一则有关“超级电池”的消息。充电时间不到8分钟,续航能力高达1000公里,如果这款由石墨烯聚合材料电池提供电力的电动汽车实现量产,对传统汽车行业无疑是毁灭性的打击。 石墨烯的“神奇”并不局限于新型