Antpedia LOGO WIKI资讯

傅里叶变换红外光谱仪的优点

傅里叶变换光谱仪的主要优点是: ①多通道测量使信噪比提高; ②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度; ③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米; ④增加动镜移动距离就可使分辨本领提高; ⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现......阅读全文

傅里叶变换红外光谱仪的优点

  傅里叶变换光谱仪的主要优点是:  ①多通道测量使信噪比提高;  ②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度;  ③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米;  ④增加动镜移动距离就可使分辨本领提高;  ⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现

傅里叶变换红外光谱仪简介

  傅里叶变换红外光谱仪主要由迈克尔逊干涉仪和计算机组成。迈克尔逊干涉仪的主要功能是使光源发 出的光分为两束后形成一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率 和强度信息。用计算机将干涉图函数进行傅里叶变换,就可计算出原来光源的强度按频率的分布。[1]它克服了色散型光

傅里叶变换红外光谱仪概述

红外光谱法 (infrared spectroscopy,IR) 是鉴别化合物和进行物质分子结构研究的重要手段之一,同时也是物质组分定量分析的方法之一,是分子光谱法的一个重要分支。它是一种借助红外光被物质吸收情况,获得被测物质分子内部原子间相对振动和分子转动等信息,并根据所获得信息进行物质分子结构研

傅里叶变换红外光谱仪原理

一、产生红外吸收的条件根据量子力学,分子内部原子间的相对振动和分子本身转动所需的能量是量子化的,也就是说,从一个能态跃迁到另一个能态不是连续的,当照射于分子的光能 (E,E=hυ,h为普朗克常数,υ为光的频率) 刚好等于基态第一振动或转动能量的差值 (△E=E1- E0) 时,则分子便可吸收光能量,

傅里叶变换红外光谱仪的产品特点

傅里叶变换红外光谱仪的产品特点傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,

傅里叶变换红外光谱仪的操作步骤

  1. 开机前准备  开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温在15~25℃、湿度 ≤ 60%才能开机;  2. 开机  首先打开仪器的外置电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic菜单,检查仪器稳定性;  

傅里叶变换红外光谱仪的光学原理

傅立叶变换红外光谱仪的典型光路系统,来自红外光源的辐射,经过凹面反射镜使成平行光后进入迈克尔逊干涉仪,离开干涉仪的脉动光束投射到一摆动的反射镜B,使光束交替通过样品池或参比池,再经摆动反射镜C(与B同步),使光束聚焦到检测器上。 傅立叶变换红外光谱仪无色散元件,没有夹缝,故来自光源的光有足够的能量经

漫反射傅里叶变换红外光谱法的优点

   漫反射技术是一种对固体粉末样品进行直接测量的光谱方法。虽然早在20 世纪60 年代就已发展成为光谱学中的一个分支, 但与红外光谱结合, 是在傅里叶变换红外光谱出现后, 漫反射傅立叶变换红外光谱技术才进入实用阶段。与透射傅立叶变换红外光谱技术相比, 漫反射傅里叶变换红外光谱法具有如下优点:不需要

傅里叶变换型近红外光谱仪器

  傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。   其基本组成包括五部分:   分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;   以传统的麦克尔