激光拉曼光谱仪的简介和原理
简介 拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差和化合物振动频率、转动频率的关系的分析方法。与红外光谱类似,拉曼光谱是一种振动光谱技术。所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐。 仪器原理 一定波长的电磁波作用于被研究物质的分子,引起分子相应能级的跃迁,产生分子吸收光谱。引起分子电子能级跃迁的光谱称电子吸收光谱,其波长位于紫外~可见光区,故称紫外-可见光谱。电子能级跃迁的同时伴有振动能级和转动能级的跃迁。引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。拉曼散射光谱是分子的振动-转动光谱。用远红外光波照射分子时,只会引起分子中转动能级的跃迁,得到纯转动光谱。......阅读全文
激光拉曼光谱仪的简介和原理
简介 拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差和化合物振动频率、转动频率的关系的分析方法。与红外光谱类似,拉曼光谱是一种振动光谱技术。所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐。 仪器原理 一定波长
简介激光显微共焦拉曼光谱仪的拉曼基本原理
当光打到样品上时,样品分子会使入射光发生散射,若部分散射光的频率发生改变,则散射光与入射光之间的频率差称为拉曼位移。拉曼光谱仪主要就是通过拉曼位移来确定物质的分子结构,针对固体、液体、气体、有机物、高分子等样品均可以进行定性定量分析。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子
简介激光显微共焦拉曼光谱仪拉曼位移
在透明介质散射光谱中,入射光子与分子发生非弹性散射,分子吸收频率为ν0 的光子,发射ν0-ν1的光子,同时电子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为ν0的光子,发射ν0+ν1的光子,同时电子从高能态跃迁到低能态(反斯托克斯线)。靠近瑞利散射线的两侧出现的谱线称为小拉曼光谱;远离瑞利散
激光拉曼光谱仪结构和原理是什么
激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不仅改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于
激光拉曼光谱仪的原理简述
激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不仅改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于
激光拉曼和傅里叶变换拉曼光谱仪的比较
拉曼光谱仪按照激发光源与分光系统的不同可分为两大类:色散型拉曼光谱仪 (简称激光拉曼) 和傅里叶变换拉曼光谱仪 (简称傅变拉曼)。前者采用短波的可见光激光器激发、光栅分光系统,近年向着更短的紫外激光器发展;后者则采用长波的近红外激光器激发、迈克尔逊干涉仪调制分光等技术。激光拉曼和傅变拉曼由于在仪器的
简介拉曼光谱仪的原理
当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光
激光共聚焦拉曼光谱仪简介
原理:当光打到样品上时候,样品分子会使入射光发生散射。大部分散射的光频率没变,我们这种散射称为瑞利散射,部分散射光的频率变了,称为拉曼散射。散射光与入射光之间的频率差称为拉曼位移。拉曼光谱仪主要就是通过拉曼位移来确定物质的分子结构。 适合分析材料:固体、液体、气体、有机物、高分子等 应用领域
激光拉曼光谱仪的原理结构介绍
用可见激光(也有用紫外激光或近红外激光进行检测)来检测处于红外区的分子的振动和转动能量,它是 一种间接的检测方法:把红外区的信息变到可见光区,并通过差频(即拉曼位移)的方法来检测 组成:激光光源:He-Ne激光器,波长632.8nm;Ar激光器,波长514.5 nm,488.0nm;散射强度∝
激光拉曼光谱仪
激光拉曼光谱仪是一个集合了激光光谱学、精密机械和微电子系统的综合测量体系。其最终结果是获得散射介质在一定方向上具有一定偏振态的散射光强随频率分布的谱图。 激光拉曼光谱仪分析是一种非破坏性的微区分析手段,液体、粉末及各种固体样品均不需特殊处理即可用于拉曼光谱的测定。拉曼光谱可以单独,或与其他技术(如X
激光拉曼光谱仪简介-(2008/5/13)
激光拉曼光谱法是以拉曼散射疚为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频
激光拉曼光谱原理
拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差和化合物振动频率、转动频率的关系的分析方法。 与红外光谱类似,拉曼光谱是一种振动光谱技术。所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐。 激光拉曼光谱原理:
激光拉曼光谱仪(图)
一、拉曼散射的发展历史1928年,印度物理学家拉曼用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。拉曼因发现这一新的分子辐射和所取得的许多光散射研究成果而获得了193
激光拉曼光谱的原理
一定波长的电磁波作用于被研究物质的分子,引起分子相应能级的跃迁,产生分子吸收光谱。引起分子电子能级跃迁的光谱称电子吸收光谱,其波长位于紫外~可见光区,故称紫外-可见光谱。电子能级跃迁的同时伴有振动能级和转动能级的跃迁。引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。拉曼散
激光拉曼光谱的原理
一定波长的电磁波作用于被研究物质的分子,引起分子相应能级的跃迁,产生分子吸收光谱。引起分子电子能级跃迁的光谱称电子吸收光谱,其波长位于紫外~可见光区,故称紫外-可见光谱。电子能级跃迁的同时伴有振动能级和转动能级的跃迁。引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。拉曼散
激光增强拉曼散射的概念和原理
中文名称激光增强拉曼散射英文名称laser stimulated Raman scattering定 义当激光的频率接近或等于被测分子的电子吸收频率时,某一条或几条特定的拉曼线强度会急剧增强(一般会增强100~1 000 000倍)的散射现象。应用学科生物化学与分子生物学(一级学科),方法与技术(
激光拉曼光谱仪的应用
一、无机化合物的分析化学结构的测定——无机化合物对称性强,用红外光谱法很难解决,而拉曼光谱测无机原子团的结构、以及测络合物的结构是很方便的。(1)对于汞离子在水溶液中,是以Hg+或Hg2+存在的,用红外光谱是无法确定的。因这两种离子在红外光谱上都无吸收带。在拉曼光谱中可看到(Hg-Hg)2+的强偏振
激光显微共焦拉曼光谱仪的拉曼效应
光散射是自然界常见的现象。晴朗的天空之所以呈蓝色、早晚东西方的空中之所以出现红色霞光等,都是由于光发生散射而形成了不同的景观。拉曼光谱是一种散射光谱。在实验室中,我们通过一个很简单的实验就能观察到拉曼效应。在一暗室内,以一束绿光照射透明液体,例如戊烷,绿光看起来就像悬浮在液体上。若通过对绿光或蓝
激光拉曼光谱仪维护要点
拉曼光谱与物质分子的振动转动能级有关,是分子的指纹光谱,广泛应用于各种领域。大型拉曼光谱仪体积大、价格昂贵,仅适用于高校实验室及相关科研院所。21世纪以来,由于现场检测的需要,便携式拉曼光谱仪发展迅速。 在很长的一段时间,由于拉曼与生俱来的缺点(信号弱)而限制了它的应用,但是随着仪器技术
激光拉曼光谱仪知识大全
拉曼光谱仪性能的检定方法 一、检定条件 (a)Ar+激光器的激发线为514.5nm、488.0nm输出功率不少于300mW; (b)低压汞灯或氖灯; (c)毛细管,CCl4试剂等。 二、环境条件 拉曼光谱仪应安放在防震台上,通风良好,附近无强电场、磁场干扰;室温18~24℃;相对温度≤7
什么是激光拉曼光谱仪?
激光拉曼光谱仪是一个集合了激光光谱学、精密机械和微电子系统的综合测量体系。其最终结果是获得散射介质在一定方向上具有一定偏振态的散射光强随频率分布的谱图。 激光拉曼光谱仪分析是一种非破坏性的微区分析手段,液体、粉末及各种固体样品均不需特殊处理即可用于拉曼光谱的测定。拉曼光谱可以单独,或与其他技术
关于Renishaw拉曼光谱仪激光器的特点简介
532nm和785nm,每个激发波长均配置干涉滤光片和两个Edge瑞利滤光片,滤除等离子线和瑞利散射,仪器阻挡激光瑞利散射水平好于1014,且在全扫描范围(50-4000 cm-1)内,无等离子线,激光光斑连续可调,采用三点机械定位方式,磁性粘贴,拆卸方便,重复性好。软件控制自动切换激发波长,采
简介激光显微共焦拉曼光谱仪的滤光器
激光波长的散射光(瑞利光)要比拉曼信号强几个数量级,必须在进入检测器前滤除,另外,为防止样品不被外辐射源(例如:房间的灯光,激光等离子体)照射,需要设置适宜的滤波器或者物理屏障。安置滤光部件的主要目的是为了抑制杂散光以提高拉曼散射的信噪比。在样品前面,典型的滤光部件是前置单色器或干涉滤光片,它们
拉曼光谱仪的原理
其原理为当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散
拉曼光谱仪的原理
其原理为当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散
拉曼光谱仪的原理
拉曼光谱(Raman spectra) ,是一种散射光谱,也是一种振动光谱技术。 拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。 拉曼散射
拉曼光谱仪的原理
其原理为当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散
拉曼光谱仪的原理
其原理为当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散
拉曼光谱仪的原理
拉曼光谱仪的原理是利用拉曼散射来测量物质的成分、分子结构和相互作用及变化过程。它最大的优点是快速和无损。快速:几秒就可以出结果;无损:不损伤被测物质,也无需制样。。拉曼光谱仪的用途非常广泛,也简单介绍一些。制药工程:药品检测、原料检测与质量控制、结晶过程监视等;宝石鉴定:珠宝玉石的品种、真假、染色及
激光拉曼光谱仪的应用(二)
在生物方面上的应用 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质二级结构的研究、DNA和致癌物分子间的作用、视紫红质在光循环中的结构变化、动脉硬化操作中的钙化沉积和红细胞膜的等研