带电粒子活化分析的发展应用

①对氢、氦、锂、铍、硼、碳、氮、氧和氟等在生命科学、材料科学、环境科学和地学研究中具有重要意义的轻元素,带电粒子活化分析有较高的分析灵敏度,因此,带电粒子活化分析在上述领域中的应用将日趋广泛。 ②带电粒子活化分析的一个新的应用领域是γ射线天文学。其内容之一是通过测定行星、小行星和月球等地外物质表面发射的γ射线能谱来确定其化学组成。方法是先进行模拟实验,利用加速器产生的氘束流轰击二氧化硅等地外物质样品,活化后,根据样品发射的γ射线,有可能反演地外物质的化学组成。 ③分析技术的发展,改变了过去那种单一应用某种分析方法的状况,大量的研究课题都要求几种分析测试方法的相互配合和验证。特别是在微区和表面分析方面,带电粒子活化分析与电子能谱、电子探针等方法的配合和验证更为重要。......阅读全文

带电粒子活化分析的发展应用

  ①对氢、氦、锂、铍、硼、碳、氮、氧和氟等在生命科学、材料科学、环境科学和地学研究中具有重要意义的轻元素,带电粒子活化分析有较高的分析灵敏度,因此,带电粒子活化分析在上述领域中的应用将日趋广泛。  ②带电粒子活化分析的一个新的应用领域是γ射线天文学。其内容之一是通过测定行星、小行星和月球等地外物质

带电粒子活化分析的相关应用

  ①质子活化分析,可用于超纯硅中硼的测定(灵敏度可达3×10-9克),特种钢表层中痕量碳的测定,玻璃中氟的测定,岩矿试样中锂、镍和铜的测定;  ②氘子活化分析可用于钢表层中碳、氮、氧和镁的测定,高纯铝中碳和铜的测定,铁中镓的测定,玻璃中钠的测定,生物等有机物试样中碳、氮和磷的测定,岩矿试样中钠、镁

中子活化分析的发展趋势及应用

  发展趋势  ①从单纯的元素分析扩展到化学状态的测定:随着中子活化分析应用领域的扩大,不仅需要测定样品中元素的含量,而且还要求深入研究元素的分布和状态。例如,在环境科学研究中分析水中痕量元素时,增加超过滤法前处理,将水样分解成低分子量组分、胶体、假胶体和颗粒物,再用中子活化法分别测定处于不同状态的

活化分析的应用介绍

由于高分辨半导体γ射线探测器的使用,电子计算机在核分析技术上的应用,以及在此基础上建立的各种高效的γ能谱分析及数据处理系统,可以快速、自动地对复杂的γ谱形进行解析、计算和同位素识别,促进了活化分析技术的迅速发展,并可以使分析过程完全自动化。活化分析技术已成为现代先进痕量分析技术之一,不仅在高纯材料研

活化分析的应用前景

学科领域交叉活化分析发展的特点之一是学科领域交叉,这主要是指生命科学、地学和环境科学,这三门学科约占活化分析工作总数的80%以上。分析方法交叉是指活化分析法和其他核分析法(如质子激发X射线荧光法、质子散射法等)及非核分析法(如气相色谱法、激光光谱法等)的交叉配合使用和相互验证。  新活化机理为了满足

中子活化分析的应用

   中子活化分析  中子活化分析在考古学中主要用来测量陶瓷器、玻璃、银币、铜镜、燧石、骨头化石等样品中的微量元素和痕量元素,进行统计分析,寻找共同性和差异性,从而确定元素成分的演变、产地及矿源等。不同地区的陶瓷土的元素组成差异,特别是微量、痕量元素组成差异大于它们在同一陶土源不同部位的涨落。以我国

活化分析的概念和应用

活化分析(activation analysis)是指用一定能量和流强的中子(包括 热中子、超热中子、快中子、冷中子)、带电粒子(质子、氘子、 3He、 4He、重离子等)或者高能γ光子轰击试样,使待测原子受激活化,然后测定由核反应生成的放射性核素衰变时放出的缓发辐射,或者直接测定核反应时放出的瞬发

中子活化分析的发展趋势

  ①从单纯的元素分析扩展到化学状态的测定:随着中子活化分析应用领域的扩大,不仅需要测定样品中元素的含量,而且还要求深入研究元素的分布和状态。例如,在环境科学研究中分析水中痕量元素时,增加超过滤法前处理,将水样分解成低分子量组分、胶体、假胶体和颗粒物,再用中子活化法分别测定处于不同状态的元素含量。 

概述中子活化分析的发展趋势

  首次中子活化分析是1936年由匈牙利化学家赫维斯(Hevesy)等引入的,他们用Ra+Be中子源通过Dy(n,g)Dy反应和气体电离探测器,成功地测定了Y2O3中含量约0.1%的Dy。随着NaI探测器(1948)和反应堆(1951)的发展,中子活化分析的元素数量、灵敏度都有了很大的提高。1960

关于中子活化分析的应用介绍

  中子活化分析在考古学中主要用来测量陶瓷器、玻璃、银币、铜镜、燧石、骨头化石等样品中的微量元素和痕量元素,进行统计分析,寻找共同性和差异性,从而确定元素成分的演变、产地及矿源等。不同地区的陶瓷土的元素组成差异,特别是微量、痕量元素组成差异大于它们在同一陶土源不同部位的涨落。以我国古瓷研究为例,古代

关于中子活化分析的应用介绍

  中子活化分析在考古学中主要用来测量陶瓷器、玻璃、银币、铜镜、燧石、骨头化石等样品中的微量元素和痕量元素,进行统计分析,寻找共同性和差异性,从而确定元素成分的演变、产地及矿源等。不同地区的陶瓷土的元素组成差异,特别是微量、痕量元素组成差异大于它们在同一陶土源不同部位的涨落。以我国古瓷研究为例,古代

关于中子活化分析的发展趋势介绍

  首次中子活化分析是1936年由匈牙利化学家赫维斯(Hevesy)等引入的,他们用Ra+Be中子源通过Dy(n,g)Dy反应和气体电离探测器,成功地测定了Y2O3中含量约0.1%的Dy。随着NaI探测器(1948)和反应堆(1951)的发展,中子活化分析的元素数量、灵敏度都有了很大的提高。1960

中子活化分析的特点及发展趋势

  特点  NAA法特别适合考古学中的元素分析。它与其他元素分析法相比较,有许多优点:  其一,灵敏度高,准确度、精确度高。NAA法对周期表中80%以上的元素的灵敏度都很高,一般可达10-6-10-12g,其精度一般在±5%。  其二,多元素分析,它可对一个样品同时给出几十种元素的含量,尤其是微量元

活化分析的概念

利用核反应使待测样品中的稳定核素转变为放射性核素后,由核反应截面、粒子注量率、射线能量、半衰期和放射性活度来确定待测物的含量。可分为中子活化分析、带电粒子活化分析和光子活化分析。活化分析作为高灵敏度核分析技术,在生物样品分析和高纯材料中微量材料的分析,以及在环境科学、考古学和法医学等领域广泛应用。

带电粒子激发X荧光分析的概述

  简称PIXE,它应用的带电粒子可以是质子、α粒子或重离子,目前使用最多的是质子。它是用加速器(常用静电加速器产生的几兆电子伏能量的质子束轰击样品,质子使样品中各元素原子的内层电子电离,接着较外层的电子向内层跃迁,同时发射X射线。由于各种元素发射具有特定波长(或能量)的标识X射线,可利用锂漂移硅探

活化分析的原理

用一定能量和流强的中子、带电粒子或γ射线同样品中所含核素发生核反应,使之成为放射性核素(这个过程称为活化),测量此放射性核素的衰变特性(如半衰期、射线的能量和射线的强度等)来确定待分析样品中所含核素的种类及其含量 [2]  。如用热中子活化分析砷,所用的核反应为:n+75As→76As*+γ或记为7

活化分析的概念

活化分析(activation analysis)是指用一定能量和流强的中子(包括 热中子、超热中子、快中子、冷中子)、带电粒子(质子、氘子、 3He、 4He、重离子等)或者高能γ光子轰击试样,使待测原子受激活化,然后测定由核反应生成的放射性核素衰变时放出的缓发辐射,或者直接测定核反应时放出的瞬发

放射分析法的特点和分析范围

放射分析化学与一般分析化学比较,有下列特点:基于测量放射性或特征辐射,分析灵敏度高(一般能达1ppm),准确度高,分析速度快,方法简便可靠,取样量小,有时还可以不破坏样品结构等。各种分析方法都具有其特点和最适分析范围。同位素稀释法要有已知比活度的放射性标准,亚化学计量法就无此需要;中子活化分析一般对

放射分析法的研究历史

20世纪初,随着天然放射性的发现,就开始探索将天然放射性核素用于分析化学中,以简化操作、提高分析的灵敏度。1912年G.赫维西等人首次用放射性铅(210Pb)作指示剂测定铬酸铅的溶解度。1925年R.埃伦伯格以放射性铅(212Pb)作指示剂用沉淀法分析天然铅。1932年赫维西等人为了测定花岗岩中的微

活化分析的技术特点

活化分析依赖于核反应、核性质和核谱学,因此不同于其他依赖于核外电子跃迁的分析方法(如原子吸收法、等离子体发射谱法、电化学法等)。主要优点是:①灵敏度高。活化分析对元素周期表中大多数元素的分析灵敏度在10-6—10-13克/克之间。因此,利用活化分析测试样品时,取样量可少至毫克量级甚至微克量级,这对于

活化分析的方法分类

活化分析可根据不同的方法进行分类:①按照射粒子分类。可分为热中子活化分析、超热中子活化分析、快中子活化分析、质子活化分析、重离子活化分析、光子活化分析等。②按工作方法分类。可分为仪器活化分析(又称非破坏性活化分析)和放射化学活化分析(又称破坏活化分析)。前者在分析过程中对样品不作任何处理,而后者需进

中子活化分析的简史

  1936年匈牙利化学家G.C.de赫维西和H.莱维用镭-铍中子源 (中子产额约 3×106中子/秒)辐照氧化钇试样,通过164Dy(n,γ)165Dy反应(活化反应截面为2700靶(恩), 生成核165Dy的半衰期为2.35小时)测定了其中的镝,定量分析结果为10-3克/克,完成了历史上首次中子

中子活化分析的特点

  NAA法特别适合考古学中的元素分析。它与其他元素分析法相比较,有许多优点:  其一,灵敏度高,准确度、精确度高。NAA法对周期表中80%以上的元素的灵敏度都很高,一般可达10-6-10-12g,其精度一般在±5%。  其二,多元素分析,它可对一个样品同时给出几十种元素的含量,尤其是微量元素和痕量

中子活化分析的概述

  中子活化分析,又称仪器中子活化分析,是通过鉴别和测试式样因辐照感生的放射性核素的特征辐射,进行元素和核素分析的放射分析化学方法。活化分析的基础是核反应,以中子或质子照射试样,引起和反应,使之活化产生辐射能,用γ射线分光仪测定光谱,根据波峰分析确定试样成分;根据辐射能的强弱进行定量分析。一般中子源

中子活化分析的原理

  中子是电中性的,所以当用中子辐照试样时,中子与靶核之间不存在库仑斥力,一般通过核力与核发生相互作用。核力是一种短程力,作用距离为10-13厘米,表现为极强的吸引力。中子接近靶核至10-13厘米时,由于核力作用,被靶核俘获,形成复合核。复合核一般处于激发态(用*表示),寿命为10-12~10-16

关于中子活化分析的简介

  中子活化分析,又称仪器中子活化分析,是通过鉴别和测试式样因辐照感生的放射性核素的特征辐射,进行元素和核素分析的放射分析化学方法。活化分析的基础是核反应,以中子或质子照射试样,引起核反应,使之活化产生辐射能,用γ射线分光仪测定光谱,根据波峰分析确定试样成分;根据辐射能的强弱进行定量分析。一般中子源

简述中子活化分析的优点

  其一,灵敏度高,准确度、精确度高。NAA法对周期表中80%以上的元素的灵敏度都很高,一般可达10-6-10-12g,其精度一般在±5%。  其二,多元素分析,它可对一个样品同时给出几十种元素的含量,尤其是微量元素和痕量元素,能同时提供样品内部 和表层的信息,突破了许多技术限于表面分析的缺点。  

关于中子活化分析的简介

  中子活化分析,又称仪器中子活化分析,是通过鉴别和测试式样因辐照感生的放射性核素的特征辐射,进行元素和核素分析的放射分析化学方法。活化分析的基础是核反应,以中子或质子照射试样,引起核反应,使之活化产生辐射能,用γ射线分光仪测定光谱,根据波峰分析确定试样成分;根据辐射能的强弱进行定量分析。一般中子源

磁透镜粒子加速器

  粒子加速器(particle accelerator)全名为“荷电粒子加速器”,是使带电粒子在高真空场中受磁场力控制、电场力加速而达到高能量的特种电磁、高真空装置。是人为地提供各种高能粒子束或辐射线的现代化装备。  日常生活中常见的粒子加速器有用于电视的阴极射线管及X光管等设施。一部分低能加速器

湍动磁重联电流片中带电粒子的加速研究获进展

近日,天文学国际期刊《天体物理学杂志》(The Astrophysical Journal)发表了云南天文台“太阳活动和CME理论研究团组”的最新研究成果,该研究由李燕及组内其他合作者共同完成。他们详细研究了带电粒子在湍动磁重联电流片中的加速过程,给出了粒子加速的一些新结果。 太阳耀斑是太阳大气