波谱仪和能谱仪的区别

能谱仪是用来对材料微区成分元素种类与含量分析,配合扫描电子显微镜与透射电子显微镜的使用。当X射线光子进入检测器后,在Si(Li)晶体内激发出一定数目的电子空穴对。产生一个空穴对的最低平均能量ε是一定的(在低温下平均为3.8ev),而由一个X射线光子造成的空穴对的数目为N=△E/ε,因此,入射X射线光子的能量越高,N就越大。利用加在晶体两端的偏压收集电子空穴对,经过前置放大器转换成电流脉冲,电流脉冲的高度取决于N的大小。电流脉冲经过主放大器转换成电压脉冲进入多道脉冲高度分析器,脉冲高度分析器按高度把脉冲分类进行计数,这样就可以描出一张X射线按能量大小分布的图谱。 波谱仪是利用波谱法对物质的成分和结构进行分析的仪器,包括X射线波谱仪,核磁共振波谱仪等。 能谱仪具有分析速度快,灵敏度高,谱线重复性好的有点;也具有能量分辨率低、峰背比低,要求严格的缺点。 波谱仪的优点是波长分辨率高,但由于结构特点,波谱仪想要有足够的色散率,其聚......阅读全文

便携式高光谱地物波谱仪

  便携式高光谱地物波谱仪是一种用于生物学、化学、物理学、农学领域的分析仪器,于2016年12月13日启用。  技术指标  光谱分辨率: 1.4 nm @ 300-1100 nm, 15 nm @ 1100-2500 nm;光谱范围: 300-2500 nm; 采样间隔: 0.6 nm @ 300-

电子顺磁共振波谱仪概述

  波谱仪  绝大多数仪器工作于微波区,通常采用固定微波频率v,而改变磁场强度H来达到共振条件。但实际上v若太低,则所用波导答尺寸要加大,变得笨重,加工不便,成本贵;而v又不能太高,否则H必须相应提高,这时电磁铁中的导线匝数要加多,导线加粗,磁铁要加大,亦使加工困难。

研究核磁共振波谱仪的方法

   研究核磁共振波谱仪的基本方法有两种:一是连续波或称稳态方法,是用连续的射频场作用到核系统上,观察到核对频率的的响应信号。另一种是用脉冲法,用射频脉冲作用到核系统上,观察到核对时间的响应信号。脉冲法有较高的灵敏度,测量速度快,但需要进行快速傅立叶变换,技术要求比较高,以观察信号区分,可分观察色散

电镜附件的原理及其应用——波谱仪

波谱仪原理及应用波谱仪(即X射线波长色散谱仪,简称WDS),用作微区成分分析。成分分析的原理可用λ=(d/R)L公式表示。λ是电子束激发试样时产生的X射线波长,跟元素有关;d是分光晶体的面间距,为已知数;R是波谱仪聚焦园的半径,为已知数;L是X射线发射源与分光晶体之间的距离。对于不同的L则有不同的X

400MHz核磁共振波谱仪

  400MHz核磁共振波谱仪是一种用于化学、材料科学、药学领域的分析仪器,于2011年3月30日启用。  技术指标  AVANCE III 400MHz,宽带探头频率范围15N-31P。  主要功能  主要用于可溶性有机物、无机物、聚合物分子结构和相互作用研究;物质的核磁特性研究。可进行多种核素的

微电子自旋共振波谱仪

  微电子自旋共振波谱仪是一种用于化学、自然科学相关工程与技术、材料科学、环境科学技术及资源科学技术领域的分析仪器,于2018年7月11日启用。  技术指标  灵敏度:8*1013 spin/T;分辨率 0.006mT;最大磁场强度0.7T;扫描宽度10-4-0.65T;波段范围:X波段;微波功率:

台式核磁共振波谱仪的优势

核磁共振波谱仪是研究原子核对射频辐射的吸收,它是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分析。现有的核磁共振波谱仪是极其昂贵的,部分原因是它们需要特殊的冷却,特殊的环境和训练有素的专家来运行它们。另一方面,Pulsar台式核磁共振波谱仪是一个基于永久性磁体,而

台式核磁共振波谱仪功能简介

方便和易于使用  使用标准5毫米 NMR测试管,和高场仪器完全一样,因此样品处理熟悉和方便。 可以部署在实验室里,不需要更多的时间等待核磁共振的结果。它是完全安全的操作,该软件是简洁和容易使用的。没有专业操作技术人员的要求,普通学生也可以使用它自己。  低采购和运营成本  因为没有超导磁体, 它的成

核磁共振波谱仪的应用方向

作为测定原子的核磁距和研究核结构的直接而又准确的方法,核磁共振波谱仪是物理学,化学,生物学的研究中的一种重要而强大的实验手段,也是许多应用科学,如医学,遗传学,计量科学,石油分析等学科的重要研究工具。以下是核磁共振波谱仪的一些基本应用:l子结构的测定l化学位移各向异性的研究l金属离子同位素的应用l动

核磁共振波谱仪的相关分析

  如果有一束频率为 的电磁辐射照射自旋核,当 = 0时,则自旋核将吸收其辐射能而产生共振,即所谓核磁共振。吸收能量的大小取决于核的多少。这一事实,除为测量 提供途径外,也为定量分析提供了根据。具体的实现方法是:在固定磁场 0上附加一个可变的磁场。两者叠加的结果使有效磁场在一定范围内变化,即 0在一

核磁共振波谱仪的组成结构

  核磁共振波谱仪主要由5个部分组成。①磁铁:它的作用是提供一个稳定的高强度磁场,即 0。②扫描发生器:在一对磁极上绕制的一组磁场扫描线圈,用以产生一个附加的可变磁场,叠加在固定磁场上,使有效磁场强度可变,以实现磁场强度扫描。③射频振荡器:它提供一束固定频率的电磁辐射,用以照射样品。④吸收信号检测器

核磁共振波谱仪的样品准备

  (1)送检样品纯度一般应>95% ,无铁屑、灰尘、滤纸毛等杂质。一般有机物须提供的样品量:  (2)若仪器配置仅能进行液体样品分析,要求样品在某种氘代溶剂中有良好的溶解性能,送样者应先选好所用溶剂。常备的氘代溶剂有氯仿、重水、甲醇、 丙酮、 DMSO 、苯、邻二氯苯、乙腈、吡啶、醋酸、三氟乙酸。

核磁共振波谱仪的发展历史

1946年,哈佛大学珀赛尔用吸收法首次观测到石蜡中质子的核磁共振(NMR),几乎同时美国斯坦福大学布洛赫(F.Block)用感应法发现液态水的核磁共振现象。因此,他们分享了1952年的诺贝尔物理学奖金。核磁共振的方法与技术作为分析物质的手段,由于其可深入物质内部而不破坏样品,核磁共振波谱仪具有迅速、

核磁共振波谱仪常见问题

  1.测试核磁共振需要多少样品量?  不同场强需要的样品量不同,如300兆核磁、分子量是几百的样品,测氢谱大约需要2mg以上的样品,测碳谱大约需要10mg以上。600兆核磁测氢谱大约需要几百微克。  2.配制样品为什么要用氘代试剂?怎样选择氘代试剂?  因为测试时溶剂中的氢也会出峰,溶剂的量远远大

核磁共振波谱仪核磁共振谱仪定义

核磁共振(nuclear magnetic resonance, NMR)是磁矩不为零的原子核,在外磁场作用自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进

X射线波谱仪的基本信息介绍

  X射线波谱仪的特点是分辨率高,通常为5—10eV,且可在室温下工作,因此分析的精度高而检测极限低。此外,根据布拉格定理2dsinθ=λ,采用晶面间距d大的分光晶体,可以分析标识X射线波长为λ的硼、碳、氮、氧等轻元素。但是X射线波谱仪也有其局限性,它的分光晶体接受X射线的立体角小,X射线的利用率低

电子顺磁共振波谱仪相关概述

  电子顺磁共振波谱仪,又称作电子自旋共振仪,由不配对电子的磁矩发源的一种磁共振技术,可用于从定性和定量方面检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性。  电子顺磁共振波谱仪主要由微波发生与传导系统、谐振腔系统、电磁铁系统以及调制和检测系统四个部分组成。它是利用ESR原理工作的

电子顺磁共振波谱仪的功能

测量顺磁体的磁化率;金属或半导体中的传导电子;固体中的某些局部晶格缺陷;辐照损伤和辐照效应;磁性薄膜的研究;纳米材料;半导体材料中掺杂对半导体性能的影响等;研究氧化还原反应过程中电荷转移情况;或紫外辐照短寿命的有机自由基的性质;动力学化学中的瞬态自由基;电化学反应过程的研究;腐蚀中的自由基行为;聚合

核磁共振波谱仪的应用和参数

核磁共振波谱仪是对经光源激发后产生荧光的物质或经化学处理后产生荧光的物质成份分析,可应用于生物化学、生物医学。 核磁共振波谱仪广泛应用于化学教育、医药制造业、实验室化学、检测工业用丙烷纯度、检测汽油中的乙醇、高分子合成研究、鉴定药物的滥用、生物燃料制造、饮料制造业、食用油的降解和香水制造业等领域。 

磁共振波谱分析仪系统简述

   射频系统  1) 射频发生器由发射器、功率放大器和发射线圈组成。射频脉冲是诱发磁共振现象的主导因素,发射的脉冲频率与主磁体产生的静磁场正交,发射的脉冲频率也需与静磁场强度相匹配。  2) 接受部分由接收线圈和低噪声信号放大器组成。探测器接收的信号传送预放大器,增加信号强度,可降低后处理过程中的

电子顺磁共振波谱仪的应用

物理学领域:  1、研究含有未成对电子的原子、离子、分子  2、研究金属或半导体中的传导电子  3、研究晶体缺陷、辐照效应和辐照损伤  4、研究半导体中掺杂的影响  5、研究单晶中的晶场  6、研究材料的磁性  化学领域:  1、三重态的双自由基和分子的研究  2、反应动力学的研究  3、γ射线照射

核磁共振波谱仪的详细说明

如果有一束频率为ω的电磁辐射照射自旋核,当ω=ω0时,则自旋核将吸收其辐射能而产生共振,即所谓核磁共振。吸收能量的大小取决于核的多少。这一事实,除为测量 γ提供途径外,也为定量分析提供了根据。具体的实现方法是:在固定磁场H0上附加一个可变的磁场。两者叠加的结果使有效磁场在一定范围内变化,即H0在一定

核磁波谱共振仪相关内容

  核磁波谱共振仪是一种用于化学、材料科学、生物学领域的分析仪器,于2012年9月1日启用。  技术指标  电源电压:AC 220V±10% 环境温度:15-30℃ 相对湿度:<80% Smart 探头:5mm BBO 宽带 探头,包含全自动调谐附件ATM和梯度线圈, H 分辨力=0.26Hz (1

核磁共振波谱仪原理及应用扩展

核磁共振波谱仪是基于核磁矩不等于零的原子核,在静磁场作用下,对稳定频率电磁波的吸收现象来研究物质结构的一种工具。分析工作者从共振峰的数和相对的强度、化学位移和驰豫时间等参数进行物质结构分析。由于核磁共振技术具有深入物质内部,而不破坏样品的特点,并随着核磁共振理论及波谱仪 器的迅速发展,核磁共振波谱仪

核磁共振波谱仪的应用和参数

核磁共振波谱仪是对经光源激发后产生荧光的物质或经化学处理后产生荧光的物质成份分析,可应用于生物化学、生物医学。 核磁共振波谱仪广泛应用于化学教育、医药制造业、实验室化学、检测工业用丙烷纯度、检测汽油中的乙醇、高分子合成研究、鉴定药物的滥用、生物燃料制造、饮料制造业、食用油的降解和香水制造业等领域。 

波谱仪和能谱仪工作原理是什么

波谱仪和能谱仪的范围基本一样,在于波谱仪的分析定量精度要高于能谱仪,可以对重叠的谱峰进行分峰处理和分析。而能谱仪以快速分析见长。但是现在波谱仪也有了进步,分析起来已经很快,对于定量要求不高的样品,十几秒就够了。根据具体问题类型,进行步骤拆解/原因原理分析/内容拓展等。具体步骤如下:/导致这种情况的原

电子顺磁共振波谱仪的原理

   物质组成的基本单位是分子,分子是由原子构成,原子是由原子核和电子组成。在多数情况下,电子在分子(或原子)轨道中是配对的,由于它们处于同一轨道中,且自旋方向相反,所以,这类化合物是逆磁性物质。但是,有许多化合物的分子轨道或原子轨道中存在着未配对的电子。这类含未成对电子的物质就是EPR研究的对象。

电子顺磁共振波谱仪样品制备

用电子顺磁共振波谱仪ESR可以测定液体和固体样品。在自由基化学研究中,多用液体样品。电子顺磁共振波谱仪ESR对样品的制备严格。样品制备条件和过程不同,可以得到不同的信息,因此,须注意样品的制备。液体样品:所选溶剂要对溶液中的自由基无干扰。在样品装入样品管之前,必须对样品溶液通氮除氧,以保护自由基。自

电子顺磁共振波谱仪样品制备

用电子顺磁共振波谱仪ESR可以测定液体和固体样品。在自由基化学研究中,多用液体样品。电子顺磁共振波谱仪ESR对样品的制备严格。样品制备条件和过程不同,可以得到不同的信息,因此,须注意样品的制备。液体样品:所选溶剂要对溶液中的自由基无干扰。在样品装入样品管之前,必须对样品溶液通氮除氧,以保护自由基。自

核磁共振波谱仪的应用领域

核磁共振波谱仪其原理主要是:在强磁场中,某些元素的原子核和电子能量本身所具有的磁性,被分裂成两个或两个以上量子化的能级。吸收适当频率的电磁辐射,可在所产生的磁诱导能级之间发生跃迁。在磁场中,这种带核磁性的分子或原子核吸收从低能态向高能态跃迁的两个能级差的能量,会产生共振谱,可用于测定分子中某些原子的