磁共振波谱分析仪系统简述
射频系统 1) 射频发生器由发射器、功率放大器和发射线圈组成。射频脉冲是诱发磁共振现象的主导因素,发射的脉冲频率与主磁体产生的静磁场正交,发射的脉冲频率也需与静磁场强度相匹配。 2) 接受部分由接收线圈和低噪声信号放大器组成。探测器接收的信号传送预放大器,增加信号强度,可降低后处理过程中的信噪比。然后传至位相敏感检测器,发生调节,从信号中减去接近larmor频率的五官波形,经计算机处理并转化为MRS谱图。 数据处理及图像显示系统 磁共振波谱分析仪一般采用固定电磁波频率,然后连续改变外加磁场强度进行扫描。原子核频率与照射频率相同时发生共振,原子核发生跃迁,接收线圈因感应而产生电流,经放大器放大后在记录仪上描记下来,从而获得磁共振信号。......阅读全文
磁共振波谱分析仪系统简述
射频系统 1) 射频发生器由发射器、功率放大器和发射线圈组成。射频脉冲是诱发磁共振现象的主导因素,发射的脉冲频率与主磁体产生的静磁场正交,发射的脉冲频率也需与静磁场强度相匹配。 2) 接受部分由接收线圈和低噪声信号放大器组成。探测器接收的信号传送预放大器,增加信号强度,可降低后处理过程中的
磁共振波谱分析仪概述
磁共振波谱分析仪是一种利用磁共振中的化学位移来测定分子组成及空间构型的检测仪器。 磁共振波谱分析仪是指研究原子核对射频辐射的吸收,对各种无机、有机物的成分、结构等进行定性分析的医疗设备,有时也可进行定量分析。它利用医学影像技术测定人体内化学代谢物,也是检测体内化学成分的无创性检查手段。 磁共
简述核磁共振波谱仪的附件信息
核磁共振波谱仪的附件信息:梯度场单元,梯度场反相探头(1H-15N,1H-13C)梯度场正相探头(15N,13C,31P等), 核磁共振实验是一个连续非时限性的研究方式。必要时,实验可以连续几天,对样品无任何破坏。核磁共振实验可以研究蛋白质结构与功能的关系;蛋白质折叠与去折叠;蛋白质构象变化;蛋
磁共振波谱分析仪的工作原理
磁共振用于临床的根本原因是磁共振产生的长波成分可以穿透人体组织,在正常组织中,代谢物以特定的浓度存在,当组织发生病变时,代谢物浓度也会发生改变,磁共振通过测量这些变化量来确定物质结构。 磁共振波谱仪利用体内含奇数质子的原子核自身的磁性及外加磁场的作用使其发生共振,发出磁共振信号,经傅里叶公式转
磁共振波谱分析仪的临床应用
1. 磁共振波谱对判断梗死区脑细胞功能的恢复有监测作用,有利于判断病变的预后。 2. 判断脑肿瘤的放射治疗、化学治疗及手术治疗后的疗效、是否有肿瘤残留或复发。区分急、慢性期以及对脱髓鞘疾病治疗的疗效做出判断。 3. 用3P磁共振波谱来检测肝肿瘤放射后所致的肝放射性损伤的程度以及肝能量代谢的状
核磁共振波谱方法
一种现代仪器分析法。在外加磁场B中,自旋量子数为I的核自旋可以有2I+1个不同的取向。例如1H,13C,19F,31P(I均为1/2),则有2个不同的取向。这是由于带正电荷的核自旋所产生的磁场,可以有与外磁场B相同的取向(具有位能E1),也可能相反(位能E2),在常态下,当E2>E1时,处于E1
磁共振波谱仪部分
主要包括射频发射部分和一套磁共振信号的接收系统。发射部分相当于一部无线电发射机,它是波形和频谱精密可调的单边带发射装置,其峰值发射功率有数百瓦至十五千瓦可调。接收系统用来接收人体反映出来的自由感应衰减信号。由于这种信号极微弱,故要求接收系统的总增益很高,噪声必须很低。一般波谱仪都采用超外差式接收
核磁共振波谱仪简介
对经光源激发后产生荧光的物质或经化学处理后产生荧光的物质成份分析,可应用于生物化学、生物医学、环主要用途:1.可进行1H、13C等常规测量,并可检测31P,15N,29Sz等多换谱2.可进行各类如DEPT、HSQC、驰豫测量3.可进行活性肽,多肽类蛋白的溶液结构研究4.可进行化合物的结构、组分的
顺磁共振波谱仪简介
电子顺磁共振波谱仪,又称作电子自旋共振仪,由不配对电子的磁矩发源的一种磁共振技术,可用于从定性和定量方面检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性。电子顺磁共振波谱仪主要由微波发生与传导系统、谐振腔系统、电磁铁系统以及调制和检测系统四个部分组成。它是利用ESR原理工作的。
桌面核磁共振波谱仪
核磁共振波谱仪是利用不同元素原子核性质的差异分析物质的磁学式分析仪器。这种仪器广泛用于化合物的结构测定,定量分析和动物学研究等方面。它与紫外、红外、质谱和元素分析等技术配合,是研究测定有机和无机化合物的重要工具。传统的超导核磁共振波谱仪是依赖于高磁场强度,而高度稳定并且高度均匀的强磁场非常难获得。需
色谱核磁共振波谱联用
核磁共振波谱(NMR)也是有机化合物结构分析的强有力的工具,特别是对同分异构体的分析十分有用,但是实现色谱和核磁共振波谱的在线联用是当前色谱联用技术中最困难的,主要原因有以下几点。首先,核磁共振波谱的灵敏度低,虽然傅里叶变换核磁共振波谱可以通过信号的累加提高灵敏度,但这需要延长采集信号的时间,这与色
色谱核磁共振波谱联用
核磁共振波谱(NMR)也是有机化合物结构分析的强有力的工具,特别是对同分异构体的分析十分有用,但是实现色谱和核磁共振波谱的在线联用是当前色谱联用技术中最困难的,主要原因有以下几点。首先,核磁共振波谱的灵敏度低,虽然傅里叶变换核磁共振波谱可以通过信号的累加提高灵敏度,但这需要延长采集信
磁共振波谱技术的发展
磁共振波谱(NMR),一种用来研究物质的分子结构及物理特性的光谱学方法,与紫外吸收光谱、红外光谱和质谱并称有机波谱的四大谱。核磁共振波谱与紫外、红外吸收光谱一样都是微观粒子吸收电磁波后在不同能级上的跃迁。紫外和红外吸收光谱是分子分别吸收波长为200~400nm和2.5~25μm的辐射后,分别引起分子
磁共振波谱分析仪磁体与匀场线圈简介
磁共振波谱分析仪结构复杂,该设备主要由两部分组成,一部分是磁共振信号的发生与采集,它主要是磁体、射频;另一部分是数据分析及图像处理。其主要结构组成如图1所示。 磁体与匀场线圈 磁共振波谱分析仪所用的磁体有三种:常导型磁体、超导型磁体、永磁体。常导型磁体因为磁场强度小,磁场均匀性受温度影响大
核磁共振波谱法的固体核磁波谱
液体核磁样品如果放在某些特定的物理环境下,是无法进行研究的,而其它原子级别的光谱技术对此也无能为力。但在固体中,像晶体,微晶粉末,胶质这样的,偶极耦合和化学位移的磁各向异性将在核自旋系统占据主导,在这种情况下如果使用传统的液态核磁技术,谱图上的峰将大大增宽,不利于研究。已经有一系列的高分辨率固体核磁
台式核磁共振波谱仪简介
核磁共振在众多领域应用越来越广泛。其中“高分辨率核磁共振谱仪”主要工作观测是 有机化学结构与核磁共振谱图相关特征信息的对应关系,是化学结构分析的重要工具。台式核磁共振采用永磁磁体,“高分辨率核磁共振谱仪”能清晰的分辨化学位移、还可 以分辨由 J-J 耦合产生的微小分裂,从中得到化学结构信息,还具
核磁共振波谱发展契机显现
核磁共振波谱仪可以对经光源激发后产生荧光的物质或经化学处理后产生荧光的物质成分进行分析。随着技术的快速发展及相关仪器的加速研制,核磁共振波谱仪应用领域日益广泛。尤其在生物医学、环境、食品等领域市场需求明显。 核磁共振技术最初起源于医学,是临床上主要用于判断大脑、内脏等软组织是否发生病变的最
核磁共振波谱仪用途概述
核磁共振波谱仪是对经光源激发后产生荧光的物质或经化学处理后产生荧光的物质成份分析,核磁共振波谱仪可应用于生物化学、生物医学、环主要用途: 1.可进行1H、13C等常规测量,核磁共振波谱仪可检测31P,15N,29Sz等多换谱 2.可进行各类如DEPT、HSQC、驰豫测量 3.可进行活性肽,多肽类蛋白
磁共振波谱成像的介绍
核磁共振波谱成像是近年来一种新型的高科技影像学检查方法,是80年代初才应用于临床的医学影像诊断新技术。它具有无电离辐射性(放射线)损害;无骨性伪影;能多方向(横断、冠状、矢状切面等)和多参数成像;高度的软组织分辨能力;无需使用对比剂即可显示血管结构等独特的优点。
台式核磁共振波谱仪概述
极度优秀的的灵敏性,简洁的的软件和操作界面。这个系统拥有优秀的信噪比。和其他台式高分辨率核磁共振仪器相比。它可以迅速地测量正常和浓缩样品在10秒。一个好的光谱对稀样品通常可以在不到10分钟内获得良好的光谱。不需要浪费时间等待测试结果时,你可以用他们立即测试。适合学生进行研究实验。
波谱分析之核磁共振
核磁共振 自1945年F.Bloch和E.M.Purcell为首的两个研究小组同时独立发现核磁共振现象以来,1H核磁共振在化学中的应用已有50年了。特别是近20年来,随着超导磁体和脉冲傅里叶变换法的普及,核磁共振的新方法、新技术不断涌现,如二维核磁共振技术、差谱技术、极化转移技术及固体核磁共振
核磁共振波谱仪的概述
利用不同元素原子核性质的差异分析物质的磁学式 分析仪器。这种仪器广泛用于化合物的结构测定,定量分析和动物学研究等方面。它与紫外、红外、质谱和元素分析等技术配合,是研究测定有机和无机化合物的重要工具。原子核除具有电荷和质量外,约有半数以上的元素的原子核还能自旋。由于原子核是带正电荷的粒子,它自旋就
电子顺磁共振波谱特征
在煤化作用古地热场条件下,沉积有机质大分子结构中化学双键受热发生均裂,形成不成对电子,致使煤中有机质具有了顺磁性。换言之,煤的电子顺磁特性与古地热场条件、有机质类型等之间具有函数关系,应用电子顺磁共振(EPR)波谱分析,可为这种关系的探测提供重要信息。在煤的结构和受热历史研究中,通过解析电子顺磁共振
电子顺磁共振波谱简介
属共振波谱的一种。在有机地球化学研究中,可以借其对自由基浓度进行检测:因为有机质(如,石油、沥青、分散有机质、煤…)中都存在自由基,只是由于所处热演化程度不同,其自由基浓度有所变化。自由基通常指一个分子或分子的一部分,由于正常的化学键被破坏而产生了一个不配对的电子——自由基,物质就具有顺磁性。顺
磁共振波谱成像的简介
核磁共振波谱成像是近年来一种新型的高科技影像学检查方法,是80年代初才应用于临床的医学影像诊断新技术。它具有无电离辐射性(放射线)损害;无骨性伪影;能多方向(横断、冠状、矢状切面等)和多参数成像;高度的软组织分辨能力;无需使用对比剂即可显示血管结构等独特的优点。
电子顺磁共振波谱仪
电子顺磁共振波谱仪,又称作电子自旋共振仪,由不配对电子的磁矩发源的一种磁共振技术,可用于从定性和定量方面检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性。电子顺磁共振波谱仪主要由微波发生与传导系统、谐振腔系统、电磁铁系统以及调制和检测系统四个部分组成。它是利用ESR原理工作的。
核磁共振波谱法简介
核磁共振波谱法(英语:Nuclear Magnetic Resonance spectroscopy,简称 NMR spectroscopy 或 NMRS ),又称核磁共振波谱,是将核磁共振现象应用于测定分子结构的一种谱学技术。核磁共振波谱的研究主要集中在氢谱和碳谱两类原子核的波谱。 人们可以
核磁共振波谱仪附件信息
梯度场单元,梯度场反相探头(1H-15N,1H-13C)梯度场正相探头(15N,13C,31P等), 核磁共振实验是一个连续非时限性的研究方式。必要时,实验可以连续几天,对样品无任何破坏。核磁共振实验可以研究蛋白质结构与功能的关系;蛋白质折叠与去折叠;蛋白质构象变化;蛋白质动态特性;蛋白质分子之
核磁共振波谱的制备须知
1.如果用核磁共振确定样品的化学结构时, 样品应该越纯越好( 一般应>95%), 包括固体样品中原有的溶剂也应除掉。2.样品需要均匀地溶解于整个溶液、无悬浮颗粒( 最好用过滤或离心的方法去除悬浮的固体颗粒),保证溶液中不能含有Fe 、Cu等顺磁性粒子,否则会影响匀场和谱图质量。3.一般的有机物须提供
核磁共振波谱仪核磁共振谱仪定义
核磁共振(nuclear magnetic resonance, NMR)是磁矩不为零的原子核,在外磁场作用自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进