信使RNA的原核生物的相关介绍
一、核糖体RNA:大肠杆菌共有7个核糖体RNA的转录单位,每个转录单位由16S、23S、5SRNA和若干转运RNA基因组成。16S和23S之间常由转运RNA隔开。转录产物在RNA酶III的作用下裂解产生核糖体RNA的前体P16和P23,再由相应成熟酶加工切除附加序列。前体加工时还进行甲基化,产生修饰成分,特别是a-甲基核苷。N4,2’-O二甲基胞苷(m4Cm)是16S核糖体RNA特有成分。5S核糖体RNA一般无修饰成分。 二、转运RNA:有60个基因,其加工包括: 1.内切酶在两端切断,大肠杆菌RNA酶P是5’成熟酶; 2.外切酶从3’修剪,除去附加顺序。RNA酶D是3’成熟酶; 3.3’端加上CCAOH,由转运RNA核苷酰转移酶催化,某些转运RNA已有,切除附加序列后即露出; 4.核苷的修饰:修饰成分包括甲基化碱基和假尿苷,修饰酶具有高度特异性。甲基化对碱基和序列都有严格要求,一般以S-腺苷甲硫氨酸为甲基供体。 ......阅读全文
信使RNA的原核生物的相关介绍
一、核糖体RNA:大肠杆菌共有7个核糖体RNA的转录单位,每个转录单位由16S、23S、5SRNA和若干转运RNA基因组成。16S和23S之间常由转运RNA隔开。转录产物在RNA酶III的作用下裂解产生核糖体RNA的前体P16和P23,再由相应成熟酶加工切除附加序列。前体加工时还进行甲基化,产生
信使RNA的真核生物的相关介绍
一、核糖体RNA:基因拷贝数多,在几十到几千之间。基因成簇排列在一起,由RNA聚合酶I转录生成一个较长的前体,哺乳动物为45S。核仁是rRNA合成与核糖体亚基生物合成的场所。RNA酶III等核酸内切酶在加工中起重要作用。5SRNA基因也是成簇排列的,由RNA聚合酶III转录,经加工参与构成大亚基
真核生物RNA的转录与原核生物RNA的转录的区别
真核生物RNA的转录与原核生物RNA的转录过程在总体上基本相同,但是,其过程要复杂得多,主要有以下几点不同: 1、真核生物RNA的转录有的是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。且真核生物线粒体和叶绿体的遗传信息系统被称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是
信使RNA的结构功能相关介绍
原核生物mRNA一般5′端有一段不翻译区,称前导区,3′端有一段不翻译区,中间是蛋白质的编码区,一般编码几种蛋白质。真核生物mRNA(细胞质中的)一般由5′端帽子结构、5′端不翻译区、翻译区(编码区)、3′端不翻译区和3′端聚腺苷酸尾巴构成。分子中除m7G构成帽子外,常含有其他修饰核苷酸,如m6
真核生物RNA的转录与原核生物RNA的转录过程差异
⒈ 真核生物RNA的转录有的是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。且真核生物线粒体和叶绿体的遗传信息系统被称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、 RNA)、核糖体、氨基酸活化酶等。说明
真核生物RNA的转录与原核生物RNA的转录过程的区别
⒈ 真核生物RNA的转录有的是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。且真核生物线粒体和叶绿体的遗传信息系统被称为真核细胞的第二遗传信息系统,或核外基因及其表达体系。这是因为研究发现,线粒体和叶绿体中除有DNA外,还有RNA(mRNA、tRNA、 RNA)、核糖体、氨基酸活化酶等。说明
信使RNA的存在范围和性质相关介绍
mRNA存在于原核和真核生物的细胞质及真核细胞的某些细胞器(如和)中。RNA病毒和RNA噬菌体中的 RNA既是遗传信息的载体又具有mRNA的功能。生物体mRNA种类的多少与生物进化水平有关,高等生物所含的遗传信息多,mRNA的种类也多。生物体内某种mRNA的含量根据需要而有不同,如5龄蚕后部丝腺
信使RNA的分类介绍
1.噬菌体的RNA聚合酶结构简单,是单链蛋白,功能也简单。 2.细菌则具有复杂的多亚基结构(450Kd),可识别并转录超过1000个转录单位。 3.真核生物的酶有多种,根据a-鹅膏蕈碱(环状8肽,阻断RNA延伸)的抑制作用可分为三类:聚合酶A对它不敏感,分布于核仁,转录核糖体RNA;聚合酶B
原核生物和真核生物的RNA聚合酶有共同特点
(1)原核生物RNA聚合酶 研究得最清楚的是大肠杆菌RNA聚合酶。该酶是由五种亚基组成的六聚体(α2ββ'ωσ)分子量约500 000。其中α2ββ'ω称为核心酶(coreenzyme),σ因子与核心酶结合后称为全酶(holoenzyme)。σ因子的主要作用是识别DNA模板上的启动子
原核生物的基因结构介绍
原核生物的基因结构多数以操纵子形式存在,即完成同类功能的多个基因聚集在一起,处于同一个启动子的调控之下,下游同时具有一个终止子。两个基因之间存在长度不等的间隔序列,如与乳糖代谢有关酶的基因。在距转录起始点-35和-10(转录起始点上游的核苷酸序列为“-”,下游的核苷酸序列为“+”)附近的序列都有RN
信使RNA的拼接相关内容
一、转运RNA的拼接:由酶催化,酶识别共同的二级结构,而不是序列。通常内含子插入到靠近反密码子处,与反密码子配对,取代反密码子环。第一步由内切酶切除插入序列,不需ATP;第二步由RNA连接酶连接,需要ATP。 二、四膜虫核糖体RNA的拼接:某些四膜虫26S核糖体RNA基因中有一个内含子,其拼接
关于信使RNA的基本介绍
信使RNA是由DNA的一条链作为模板转录而来的、携带遗传信息的能指导蛋白质合成的一类单链核糖核酸。 以细胞中基因为模板,依据碱基互补配对原则转录生成mRNA后,mRNA就含有与DNA分子中某些功能片段相对应的碱基序列,作为蛋白质生物合成的直接模板。mRNA虽然只占细胞总RNA的2%~5%,但种
原核生物的特点
① 核质与细胞质之间无核膜因而无成形的细胞核(拟核或类核);RNA转录和翻译同时进行。 ② 遗传物质是一条不与组蛋白结合的环状双螺旋脱氧核糖核酸(DNA)丝,不构成染色体(有的原核生物在其主基因组外还有更小的能进出细胞的质粒DNA); ③ 以简单二分裂方式繁殖,不存在有丝分裂或减数分裂;
原核生物的结构
鞭毛 鞭毛是很多单细胞生物和一些多细胞生物细胞表面像鞭子一样的细胞器,用于运动及其它一些功能。在三个域中,鞭毛的结构各不相同。细菌的鞭毛是螺旋状的纤维,像螺钉一样旋转。古生菌的鞭毛表面上和细菌的类似,但很多细节不同,和细菌的鞭毛可能也不是同源的。真核生物,比如动物、植物、原生生物细胞的鞭毛是细
原核生物的概述
原核生物即广义的细菌,指一大类细胞核无核膜包裹,只存在称做核区的裸露DNA的原始单细胞生物,包括真细菌和古生菌两大类群,但由于古生菌又具有许多真核生物的特征,明显区别于细菌,因此不将古生菌列入其中,而将其拿出来单独描述。具体根据外表特征等方面可以把原核生物分为狭义的细菌、蓝细菌、放线菌、支原体、
关于原核生物的转录终止介绍
原核生物的转录终止有两种形式,一种是依赖ρ(Rho)因子的终止,一种是不依赖ρ因子的终止。原核生物DNA没有共有的终止序列,而是转录产物序列指导终止过程。转录终止信号存在于RNA产物3’端而不是在DNA模板。 1、依赖ρ因子的转录终止 Rho因子是rho基因的产物,广泛存在于原核和真核细胞中
作为受体菌的原核生物介绍
(1)大肠杆菌革兰氏阴性菌受体细胞培养a.基因组、遗传背景了解最清楚b.易培养、繁殖迅速(2)枯草杆菌革兰氏阳性菌a.具胞外酶分泌-调节基因,能将表达产物分泌到培养基;b.无内毒素;c.易于保存与培养。 (3)蓝细菌a.光能自养型,易于培养;b.与植物密码子和启动子的通用性,易于表达植物基因以微生物
关于原核生物mRNA的特点介绍
在原核细胞内,参与翻译的mRNA具有以下特点: (1)具有多个开放阅读框(ORF),即多顺反子,意味着同一条mRNA可以编码多个蛋白。特别注意可读框之间不重叠(除移码翻译涉及终止密码子和起始密码子的2个碱基重叠)。 (2)具有较为保守的核糖体结合位点(RBS)GGAGG,位置大概在起始密码子
关于原核生物的DNA包装介绍
原核生物不具有以核膜为界限的细胞核,它们的DNA被组织在一个类核结构中。类核是独特的结构并占据细菌细胞确定的区域。但这种结构是动态的,可被与细菌染色体相关的一系列组蛋白样蛋白的作用来维持和重塑 [6] 。古细菌染色体中的DNA被包装在与真核核小体相似的结构中。某些细菌还含有质粒或其它染色体外DN
信使RNA的构成
大肠杆菌的全酶有5个亚基(α2ββ’ωσ),含2个锌。β催化形成磷酸二酯键,β’结合模板,σ亚基称为起始因子,可使RNA聚合酶稳定地结合到启动子上。ββ’ωσ称为核心酶。σ亚基在不同菌种间变动较大,而核心酶比较恒定。酶与不同启动子的结合能力不同,不同启动因子可识别不同的启动子。σ70识别启动子共
信使RNA的降解
同一细胞内的不同mRNA具有不同的寿命(稳定性)。在细菌细胞中,单个mRNA可以存活数秒至超过一小时,但平均寿命为1至3分钟,因此,细菌mRNA的稳定性远低于真核mRNA。哺乳动物细胞mRNA的寿命从几分钟到几天不等。mRNA的稳定性越高,从该mRNA产生的蛋白质越多。 mRNA的有限寿命使细胞能够
信使RNA的应用
2020年12月,美国食品和药物管理局(FDA)授权一款运用mRNA(信使核糖核酸)技术研制的新冠疫苗的紧急使用许可。2022年2月,南非一公司3日对当地媒体表示,该公司利用已公开的新冠疫苗核酸序列,开发出非洲大陆首款mRNA(信使核糖核酸)新冠疫苗,计划今年底前开展临床试验。 南非当地时间2022
关于基因调控的原核生物的介绍
DNA水平上的基因调控鼠伤寒沙门氏菌(Salmoella typhimurium)有两个编码鞭毛蛋白的基因H1和H2,这两个基因并不紧密连锁。H2 的一边有一个调节基因( H1 repressor gene,rh1),它所编码的阻遏蛋白作用于 H1而使它不表达。H2基因的另一边有一段经常发生倒位
信使RNA的基本信息介绍
信使RNA(mRNA)最早发现于1960年,在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成,具有以下特点。 1.含量低,占细胞总RNA的1%~5%。 2.种类多,可达105种。不同基因表达不同的mRNA。 3.寿命短,不同mRNA指导合成不同的蛋白质,完成使命后即被降解。细菌mRN
信使RNA反转录的生物学意义
1.对分子生物学的中心法则进行了修正和补充,修正后的中心法则表示为: 2.在致癌病毒的研究中发现了癌基因,在人类一些癌细胞如膀胱癌、小细胞肺癌等细胞中,也分离出与病毒癌基因相同的碱基序列,称为细胞癌基因或原癌基因。癌基因的发现为肿瘤发病机理的研究提供了很有前途的线索。 3.在实际工作中有助于
原核生物mRNA的特点
①原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。 ②原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。 ③原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时
原核生物的呼吸方式
原核生物细胞能进行有氧呼吸。有的原核生物,如硝化细菌、根瘤菌,虽然没有线粒体,但却含有全套的与有氧呼吸有关的酶,这些酶分布在细胞质基质和细胞膜上,因此,这些细胞是可以进行有氧呼吸的。利用细胞膜和细胞质的酶系进行有氧呼吸。第一个阶段发生的场所在细胞质内,产生的丙酮酸进入三羧酸循环,被彻底氧化生成C
关于原核生物的基因表达调控介绍
原核生物的基因表达调控虽然比真核生物简单,然而也存在着复杂的调控系统,如在转录调控中就存在着许多问题:如何在复杂的基因组内确定正确的转录起始点?如何将DNA的核苷酸按着遗传密码的程序转录到新生的RNA链中?如何保证合成一条完整的RNA链?如何确定转录的终止? 上述问题决定于DNA的结构、RNA
典型原核生物的细胞壁介绍
细菌细胞壁细胞膜外侧是细菌细胞壁。 细菌细胞壁由肽聚糖制成,其由多糖链制成,所述多糖链由含有D-氨基酸的不寻常肽交联。细菌细胞壁不同于分别由纤维素和甲壳素制成的植物和真菌的细胞壁。细菌的细胞壁也不同于不含肽聚糖的古菌细胞壁。尽管L型细菌可以在缺乏细胞壁的实验室中产生,但细胞壁对许多细菌的存活至关重要
原核生物的复制子功能介绍
原核生物一般来说只有一个复制起点,整个DNA都由这个起点开始的复制叉完成,所以它们的DNA是“单复制子”的。真核细胞是多个复制起点,每个起点开始各自完成一个片段最终相连完成整体复制,所以是“多复制子”的。