关于氢键的简介

氢原子与电负性大的原子X以共价键结合,若与电负性大、半径小的原子Y(O F N等)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的一种特殊的分子间或分子内相互作用,称为氢键。[X与Y可以是同一种类分子,如水分子之间的氢键;也可以是不同种类分子,如一水合氨分子(NH3·H2O)之间的氢键]。......阅读全文

关于糖异生的简介

  糖异生(Gluconeogenesis gluco-指糖,neogenesis是希腊语 νεογ?ννηση,neojénnissi  -重新生成):又称为葡糖异生。由简单的非糖前体(乳酸、甘油、生糖氨基酸等)转变为糖(葡萄糖或糖原)的过程。糖异生不是糖酵解的简单逆转。虽然由丙酮酸开始的糖异生利

关于增稠剂的简介

  增稠剂是近年来迅速发展起来的一类新型功能高分子材料,主要用于提高产品的黏度或稠度,具有用量小、增稠明显、使用方便等特点,被广泛地应用于制药、印染、化妆品、食品添加剂、采油、造纸、皮革加工等行业中。  工业增稠剂起源于20世纪,1953年,Coodrich公司首先将第一种完全由人工合成的增稠剂——

关于乳酸的简介

  名称:乳酸  英文名:Lactic acid;2-Hydroxy propionic acid  其它名称:2-羟基丙酸;α-羟基丙酸;丙醇酸  构型:L型;D型;DL型  CAS登录号:50-21-5(DL);79-33-4(L) [6] ;10326-41-7(D) [7]  分子式:C3H

关于立克次体的简介

  立克次氏体(Rickettsia)为革兰氏阴性菌,是一类专性寄生于真核细胞内的G-原核生物。是介于细菌与病毒之间,而接近于细菌的一类原核生物,没有核仁及核膜。一般呈球状或杆状,主要寄生于节肢动物,有的会通过蚤、虱、蜱、螨传入人体、引起斑疹伤寒、战壕热等疾病。 [1]  立克次体在1906年由青年

关于雌酮的简介

  雌酮(E1)是一种甾体激素化合物,为天然内源性雌激素,可以从孕妇或孕马的妊娠尿中提取而得。检测雌酮常用仪器分析法,如气相色谱法、液相色谱法,这些方法精密准确、灵敏度高,但前处理复杂、测定时间较长、不适用于大批量样品的筛选。利用免疫学方法进行雌酮含量测定是一种极具发展前途和应用前景的新技术,且检测

关于黄酮的简介

  黄酮,是指两个具有酚羟基的苯环(A与B环)通过中央三碳原子相互连结而成的一系列化合物,其基本母核为2-苯基色原酮。  黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子 相互连结而成的一系列化合物,其基本母核为2-苯基色原酮。黄酮类化合物结构中常连接有酚羟基、甲氧基、甲基、异戊

关于谷胱甘肽的简介

  谷胱甘肽(glutathione,GSH)是由谷氨酸、半胱氨酸和甘氨酸结合,含有巯基的三肽,具有抗氧化作用和整合解毒作用。半胱氨酸上的巯基为谷胱甘肽活性基团(故谷胱甘肽常简写为G-SH),易与某些药物(如扑热息痛)、毒素(如自由基、碘乙酸、芥子气,铅、汞、砷等重金属)等结合,而具有整合解毒作用。

关于雷尼替丁的简介

  雷尼替丁,又名呋喃硝胺,为强效组胺H2受体拮抗剂。作用比西咪替丁强5~8倍,且作用时间更持久。能有效地抑制组胺、五肽胃泌素和氨甲酰胆碱刺激后引起的胃酸分泌,降低胃酸和胃酶活性,主要用于胃酸过多、烧心的治疗。  中文名称:雷尼替丁  中文别名:盐酸雷尼替丁;盐酸呋喃硝胺;呋喃硝胺;甲硝呋胍;胃安太

关于菌落的简介

  菌落,亦称集落。一定种的单个菌体或孢子在一定的固体培养基上生长繁殖后形成的肉眼可见的微生物聚集体。  在培养基表面生长的菌落,叫表面菌落;在表面下生长的菌落,叫埋藏或深层菌落。不同的微生物形成的菌落有不同的特征,是鉴定菌种的重要标志。  各种微生物在一定条件下形成的菌落特征,如大小、形状、边缘、

关于氯丙嗪的简介

  氯丙嗪,别名3-(2-氯-10H-吩噻嗪-10-基)-N,N-二甲基丙-1-胺,是吩噻嗪类代表药物,为中枢多巴胺受体的拮抗药,具有多种药理活性。  一、基本信息   中文名:氯丙嗪  英文名:Chlorpromazine  化学名称:3-(2-氯-10H-吩噻嗪-10-基)-N,N-二甲基丙-1

关于尿囊素的简介

  尿囊素,别名N-(2,5-二氧代-4-咪唑啉啶基)尿素,分子式为C4H6N4O3,是一种乙内酰脲衍生物。尿囊素主要应用于医药、化妆品和农业三大领域。  化学名称:N-(2,5-二氧代-4-咪唑啉啶基)尿素  化学式:C4H6N4O3  分子量:158.115  CAS号:97-59-6  EIN

关于疫苗的简介

  疫苗的制作可以经由化学合成,由特定的蛋白质为引,制作出微妙的变化型态,使其能够与淋巴球进行生化反应,影响抗体的制造;但它也可以是直接透过生物体制造的产物,以活体的病原为起始,藉由实验控制的特殊环境下使其复制,或是使用死去的病原作为诱引,可以在不伤害其他细胞的情况下只刺激淋巴球。尽管一般认为活体疫

关于地塞米松的简介

  地塞米松价格低廉,在美国一个月疗程通常花费低于 25 美元。在印度,早产疗程一次仅需 0.5 美元。地塞米松在大多数国家都能轻易取得。地塞米松是一种人工合成的皮质类固醇,可用于治疗多种症状,包含风湿性疾病,某些皮肤病、严重过敏、哮喘、慢性阻塞性肺病、义膜性喉炎、脑水肿,也可能与抗生素合并用于结核

关于倍半萜的简介

  倍半萜(sesquiterpenes)是指分子中含15个碳原子的天然萜类化合物,是含有三个异戊二烯单元。具有链状、环状等多种骨架结构。倍半萜多为液体,主要存在于植物的挥发油中。它们的醇、酮和内酯等含氧衍生物,也广泛存在于挥发油中。  萜类化合物是广泛分布于植物、昆虫、微生物等动植物体内的一类有机

关于糖脂的简介

  糖脂是指含有糖基配体的脂类化合物。它是一类两亲性分子,在生物体内广泛存在。  依脂质部分的不同,糖脂可分为4类:  (1)含鞘氨醇(sphingosine)的鞘糖脂;  (2)含油脂的甘油糖脂;  (3)磷酸多萜醇衍生的糖脂;  (4)类固醇衍生的糖脂。

关于恒化器的简介

  恒化器,是指一种使培养液的流速保持不变,并使微生物始终在低于其最高生长速率的条件下进行生长繁殖的连续培养装置。在恒化器内,菌体密度由限制性营养成分的浓度所控制,生长速度受流速控制,流速可任意调节,因而可使微生物的生长速率正好与恒速流入的新鲜培养基流速相平衡,保持稳定的菌体密度。恒化器主要用于实验

关于霉菌的简介

  霉菌是形成分枝菌丝的真菌的统称。不是分类学的名词,在分类上属于真菌门的各个亚门。构成霉菌体的基本单位称为菌丝,呈长管状,宽度2~10微米,可不断自前端生长并分枝。无隔或有隔,具1至多个细胞核。细胞壁分为三层:外层无定形的β葡聚糖(87nm);中层是糖蛋白,蛋白质网中间填充葡聚糖(49nm);内层

哪些中性基团有氢键键合能力

一般来说,中性基团的氢键键合能力与原子的电负性和电子密度相关。以下是一些常见的中性基团,它们具有氢键键合能力:1. 酰胺基 (-CONH-):酰胺基中的羰基原子处于电子亏损状态,因此具有较高的电子亲和力,可形成氢键。2. 羧基 (-COOH):羧基中的羰基原子和氧原子都处于电子亏损状态,因此也具有较

哪些官能团之间会产生氢键

有机物中可以形成氢键的多了,也未必是用什么固定的官能团。比如我随便说一个质子给体,比如三氯甲基连的氢,或炔氢,都能形成氢键。受体也是。

羧基中哪个氧更容易形成氢键

羧基上还有一个羟基,这个羟基上的氧可以和水的氢原子形成氢键,或者羧基上有一个羰基,羰基氧可以和水分子的氢形成氢键

羟基和水分子如何形成氢键

羧基上有一个羰基,羰基氧可以和水分子的氢形成氢键哈,羧基上还有一个羟基,这个羟基上的氧可以和水的氢原子形成氢键,这个羟基上的氢可以和水分子的氧形成氢键。所以一个羧基原则上可以和水分子形成三个氢键。氢键是指羟基中氧上的孤对电子,与,其他羟基上的氢之间形成的一种弱化学键,水是一种特殊的羟基化合物,氧原子

羧酸,醚,酮能不能形成氢键

首先。羧酸。醚。酮。都能和水形成氢键。其次。羧酸可以分子间。分子内形成氢键。醚和酮是不能分子间分子内形成氢键的。

羟基和水分子如何形成氢键

羧基上有一个羰基,羰基氧可以和水分子的氢形成氢键哈,羧基上还有一个羟基,这个羟基上的氧可以和水的氢原子形成氢键,这个羟基上的氢可以和水分子的氧形成氢键。所以一个羧基原则上可以和水分子形成三个氢键。氢键是指羟基中氧上的孤对电子,与,其他羟基上的氢之间形成的一种弱化学键,水是一种特殊的羟基化合物,氧原子

哪些中性基团有氢键键合能力

一般来说,中性基团的氢键键合能力与原子的电负性和电子密度相关。以下是一些常见的中性基团,它们具有氢键键合能力:1. 酰胺基 (-CONH-):酰胺基中的羰基原子处于电子亏损状态,因此具有较高的电子亲和力,可形成氢键。2. 羧基 (-COOH):羧基中的羰基原子和氧原子都处于电子亏损状态,因此也具有较

哪些中性基团有氢键键合能力

一般来说,中性基团的氢键键合能力与原子的电负性和电子密度相关。以下是一些常见的中性基团,它们具有氢键键合能力:1. 酰胺基 (-CONH-):酰胺基中的羰基原子处于电子亏损状态,因此具有较高的电子亲和力,可形成氢键。2. 羧基 (-COOH):羧基中的羰基原子和氧原子都处于电子亏损状态,因此也具有较

氢键对化合物熔点和沸点的影响

分子间形成氢键时,化合物的熔点、沸点显著升高。HF和H2O等第二周期元素的氢化物,由于分子间氢键的存在,要使其固体熔化或液体气化,必须给予额外的能量破坏分子间的氢键,所以它们的熔点、沸点均高于各自同族的氢化物。值得注意的是,能够形成分子内氢键的物质,其分子间氢键的形成将被削弱,因此它们的熔点、沸点不

氢键对化合物熔点和沸点的影响

  分子间形成氢键时,化合物的熔点、沸点显著升高。HF和H2O等第二周期元素的氢化物,由于分子间氢键的存在,要使其固体熔化或液体气化,必须给予额外的能量破坏分子间的氢键,所以它们的熔点、沸点均高于各自同族的氢化物。  值得注意的是,能够形成分子内氢键的物质,其分子间氢键的形成将被削弱,因此它们的熔点

氢键对化合物熔点和沸点的影响

分子间形成氢键时,化合物的熔点、沸点显著升高。HF和H2O等第二周期元素的氢化物,由于分子间氢键的存在,要使其固体熔化或液体气化,必须给予额外的能量破坏分子间的氢键,所以它们的熔点、沸点均高于各自同族的氢化物。值得注意的是,能够形成分子内氢键的物质,其分子间氢键的形成将被削弱,因此它们的熔点、沸点不

氢键对化合物熔点和沸点的影响

分子间形成氢键时,化合物的熔点、沸点显著升高。HF和H2O等第二周期元素的氢化物,由于分子间氢键的存在,要使其固体熔化或液体气化,必须给予额外的能量破坏分子间的氢键,所以它们的熔点、沸点均高于各自同族的氢化物。值得注意的是,能够形成分子内氢键的物质,其分子间氢键的形成将被削弱,因此它们的熔点、沸点不

氢键对化合物熔点和沸点的影响

分子间形成氢键时,化合物的熔点、沸点显著升高。HF和H2O等第二周期元素的氢化物,由于分子间氢键的存在,要使其固体熔化或液体气化,必须给予额外的能量破坏分子间的氢键,所以它们的熔点、沸点均高于各自同族的氢化物。值得注意的是,能够形成分子内氢键的物质,其分子间氢键的形成将被削弱,因此它们的熔点、沸点不