关于核糖体RNA的结构介绍
测定rRNA的空间排列方式的方法主要有电镜法和交联法。其功能部位通过几种方法确定在70S核糖体图1中显示了rRNA分子的结合部位和方向。在电镜下,16SrRNA的排列呈V型,一个臂比一个臂稍厚和长。23S的大小和形状可与50S"皇冠"式样很好匹配。有结论认为,rRNA形成了核糖体亚基的骨架,蛋白质与其结合。一般来说,rRNA骨架不发生大的构象改变。用免疫电镜法已确定在亚基内rRNA的某些特征。使用抗N6,6-二甲基腺苷(位于16SrRNA3'末端24和25位)抗体,确定了修饰碱基区段(指16SrRNA3'端约25个碱基)位于30S亚基头和体之间。16SrRNA的第526位的m7G处于30S上1/3和下2/3交界处。16S、5S和23SrRNA的内部交联已被研究。证明在5SrRNA内G41和G72交联,这种交联属三级结构反应,利用此反应已经构建了一处改进的5SrRNA分子三维模型。此外,RN......阅读全文
关于核糖体RNA的结构介绍
测定rRNA的空间排列方式的方法主要有电镜法和交联法。其功能部位通过几种方法确定在70S核糖体图1中显示了rRNA分子的结合部位和方向。在电镜下,16SrRNA的排列呈V型,一个臂比一个臂稍厚和长。23S的大小和形状可与50S"皇冠"式样很好匹配。有结论认为,rRNA形成了核糖体亚基的骨架,蛋白
核糖体RNA的结构介绍
测定rRNA的空间排列方式的方法主要有电镜法和交联法。其功能部位通过几种方法确定在70S核糖体图1中显示了rRNA分子的结合部位和方向。在电镜下,16SrRNA的排列呈V型,一个臂比一个臂稍厚和长。23S的大小和形状可与50S"皇冠"式样很好匹配。有结论认为,rRNA形成了核糖体亚基的骨架,蛋白质与
核糖体RNA的结构
测定rRNA的空间排列方式的方法主要有电镜法和交联法。其功能部位通过几种方法确定在70S核糖体图中显示了rRNA分子的结合部位和方向。在电镜下,16SrRNA的排列呈V型,一个臂比一个臂稍厚和长。23S的大小和形状可与50S"皇冠"式样很好匹配。有结论认为,rRNA形成了核糖体亚基的骨架,蛋白质
核糖体RNA的结构
测定rRNA的空间排列方式的方法主要有电镜法和交联法。其功能部位通过几种方法确定在70S核糖体图1中显示了rRNA分子的结合部位和方向。在电镜下,16SrRNA的排列呈V型,一个臂比一个臂稍厚和长。23S的大小和形状可与50S"皇冠"式样很好匹配。有结论认为,rRNA形成了核糖体亚基的骨架,蛋白质与
关于核糖体RNA的组成的介绍
rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。原核生物的核糖体所含的rRNA有5S、16S及23S三种。S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度
关于核糖体RNA基因的基本介绍
RNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。原核生物的核糖体所含的rRNA有5S、16S及23S三种。S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与
关于核糖体RNA基因的功能介绍
就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程。在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质。因为这种未经加工的前体mRNA(pre-mRNA)在
核糖体RNA的结构及功能
结构 测定rRNA的空间排列方式的方法主要有电镜法和交联法。其功能部位通过几种方法确定在70S核糖体图中显示了rRNA分子的结合部位和方向。在电镜下,16SrRNA的排列呈V型,一个臂比一个臂稍厚和长。23S的大小和形状可与50S"皇冠"式样很好匹配。有结论认为,rRNA形成了核糖体亚基的骨架
核糖体RNA的组成及结构
组成 rRNA一般与 核糖体蛋白质结合在一起,形成 核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。 原核生物的核糖体所含的rRNA有5S、16S及23S三种。S为 沉降系数(sedimentation coefficient),当用 超速离心测定一个粒子的
关于核糖体RNA的基本内容介绍
核糖体RNA,即rRNA,是细胞内含量最多的一类RNA,也是3类RNA(tRNA,mRNA,rRNA)中相对分子质量最大的一类RNA,它与蛋白质结合而形成核糖体,其功能是在mRNA的指导下将氨基酸合成为肽链 [1] (肽链在内质网、高尔基体作用下盘曲折叠加工修饰成蛋白质,原核生物在细胞质内完成)
核糖体小RNA的概念和结构
中文名称核糖体小RNA英文名称small ribosomal RNA定 义(1)核糖体小亚基的RNA。如真核生物的18S rRNA和原核的16S rRNA。(2)核糖体中的小分子RNA,除18S和16S rRNA,还包括5S和5.8S rRNA。应用学科生物化学与分子生物学(一级学科),核酸与基因
核糖体RNA的结构和功能特点
核糖体RNA,即rRNA,是细胞内含量最多的一类RNA,也是3类RNA(tRNA,mRNA,rRNA)中相对分子质量最大的一类RNA,它与蛋白质结合而形成核糖体,其功能是在mRNA的指导下将氨基酸合成为肽链(肽链在内质网、高尔基体作用下盘曲折叠加工修饰成蛋白质,原核生物在细胞质内完成)。rRNA占R
关于小干扰RNA的结构介绍
siRNA具有明确定义的结构:具有磷酸化5'末端的短(通常20至24bp)双链RNA(dsRNA)和具有两个突出核苷酸的羟基化3'末端。该切酶酶催化生产的siRNA由长的dsRNA和小发夹RNA。siRNA也可以通过转染引入细胞。由于原则上任何基因都可以被具有互补序列的合成siR
核糖体RNA的组成
rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。原核生物的核糖体所含的rRNA有5S、16S及23S三种。S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒
核糖体RNA的特点
(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。(2)寿命长,rRNA更新慢,寿命长。 (3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生物
核糖体RNA的功能
在核糖体中,rRNA是起主要作用的结构成分,是结构和功能核心,主要功能是: (1)具有肽酰转移酶的活性。 (2)为tRNA提供结合位点。 (3)为多种蛋白质合成因子提供结合位点。 (4)在蛋白质合成起始时,参与同mRNA选择性的结合以及在肽链的延伸中与mRNA结合。 (5)此外,核糖体
核糖体RNA的特点
核糖体RNA在各种生物中都有其特性,因此可以从不同生物的rRNA的对比中得出关于生物进化历程的结论。rRNA为肽酰转移酶(peptidyl transferase)时,催化使肽键形成,不需要额外的能量。过去认为,大亚基的蛋白质具有酶的活性,促使肽键形成,故称为转肽酶。20世纪90年代初,H.F.No
核糖体RNA的特点
核糖体RNA在各种生物中都有其特性,因此可以从不同生物的rRNA的对比中得出关于生物进化历程的结论。rRNA为肽酰转移酶(peptidyl transferase)时,催化使肽键形成,不需要额外的能量。过去认为,大亚基的蛋白质具有酶的活性,促使肽键形成,故称为转肽酶。20世纪90年代初,H.F.No
核糖体RNA的特点
(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。(2)寿命长,rRNA更新慢,寿命长。 (3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生物
核糖体RNA的分类
原核生物的rRNA分三类:5SrRNA、16SrRNA和23SrRNA。真核生物的rRNA分四类:5SrRNA、5.8SrRNA、18SrRNA和28SrRNA。S为大分子物质在超速离心沉降中的一个物理学单位,可间接反映分子量的大小。原核生物和真核生物的核糖体均由大、小两种亚基组成。在人基因组的四种
核糖体RNA的组成
rRNA一般与 核糖体蛋白质结合在一起,形成 核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。 原核生物的核糖体所含的rRNA有5S、16S及23S三种。S为 沉降系数(sedimentation coefficient),当用 超速离心测定一个粒子的沉淀速度
核糖体RNA的功能
在核糖体中,rRNA是起主要作用的结构成分,是结构和功能核心,主要功能是:(1)具有肽酰转移酶的活性。(2)为tRNA提供结合位点。(3)为多种蛋白质合成因子提供结合位点。(4)在蛋白质合成起始时,参与同mRNA选择性的结合以及在肽链的延伸中与mRNA结合。(5)此外,核糖体大小亚单位的结合、校正阅
核糖体RNA的组成
rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。原核生物的核糖体所含的rRNA有5S、16S及23S三种。S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒
核糖体RNA的简介
rRNA的分子量较大,结构相当复杂,目前虽已测出不少rRNA分子的 一级结构,但对其二级、 三级结构及其功能的研究还需进一步的深入。 原核生物的rRNA分三类:5SrRNA、16SrRNA和23SrRNA。 真核生物的rRNA分四类:5SrRNA、5.8SrRNA、18SrRNA和28SrRNA
核糖体RNA特点
(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。 (2)寿命长,rRNA更新慢,寿命长。 (3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生
前核糖体RNA
中文名称前核糖体RNA英文名称pre-ribosomal RNA;precursor rRNA;pre-rRNA定 义真核细胞中rRNA基因转录的初级转录物。应用学科遗传学(一级学科),分子遗传学(二级学科)
核糖体RNA的基本特点
核糖体RNA在各种生物中都有其特性,因此可以从不同生物的rRNA的对比中得出关于生物进化历程的结论。rRNA为肽酰转移酶(peptidyl transferase)时,催化使肽键形成,不需要额外的能量。过去认为,大亚基的蛋白质具有酶的活性,促使肽键形成,故称为转肽酶。20世纪90年代初,H.F.No
核糖体RNA的功能特点
(1)含量高,rRNA是细胞内含量最高的RNA,占细胞总RNA的80%~85%。 (2)寿命长,rRNA更新慢,寿命长。 (3)种类少,原核生物有5S、16S、23s三种rRNA,约占核糖体质量的66%(其中5S,23SrRNA占核糖体大亚基的70%,16S rRNA占核糖体小亚基的60%);真核生
转运RNA的结构介绍
转运RNA分子由一条长70~90个核苷酸并折叠成三叶草形的短链组成的。上图中有两种不同的分子,苯丙氨酸tRNA(4tna)和天冬氨酸tRNA(2tra)。tRNA链的两个末端在图上方指出的L形结构的末端互相接近。氨基酸在箭头示意的位置被连接。在这条链的中央形成了L形臂,如图《tRNA的三叶草结构》下
转运RNA的结构介绍
转运RNA分子由一条长70~90个核苷酸并折叠成三叶草形的短链组成的。上图中有两种不同的分子,苯丙氨酸tRNA(4tna)和天冬氨酸tRNA(2tra)。tRNA链的两个末端在图上方指出的L形结构的末端互相接近。氨基酸在箭头示意的位置被连接。在这条链的中央形成了L形臂,如图《tRNA的三叶草结构》下