端粒的功能简介

稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5'末端在消除RNA引物后造成的空缺。 组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。 细胞分裂次数越多,其端粒磨损越多,细胞寿命越短。......阅读全文

端粒的功能简介

  稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5'末端在消除RNA引物后造成的空缺。  组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。  细胞分裂次数越多,其端粒磨损越多,细胞寿命越短。

关于端粒的发现历史简介

  科学家们在寻找导致细胞死亡的基因时,发现了一种叫端粒的存在于染色体顶端的物质。端粒本身没有任何密码功能,它就像一顶高帽子置于染色体头上。  在新细胞中,细胞每分裂一次,染色体顶端的端粒就缩短一次,当端粒不能再缩短时,细胞就无法继续分裂了。这时候细胞也就到了普遍认为的分裂100次的极限并开始死亡。

端粒的主要功能

稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5'末端在消除RNA引物后造成的空缺。组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。细胞分裂次数越多,其端粒磨损越多,细胞寿命越短。

端粒的主要功能介绍

稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5'末端在消除RNA引物后造成的空缺。组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。细胞分裂次数越多,其端粒磨损越多,细胞寿命越短。

概述端粒酶的功能特性

  端粒(Telomere)是真核细胞染色体末端的特殊结构。人端粒是由6个碱基重复序列(TTAGGG)和结合蛋白组成。端粒有重要的生物学功能,可稳定染色体的功能,防止染色体DNA降解、末端融合,保护染色体结构基因DNA,调节正常细胞生长。  由于正常细胞线性DNA复制时5'末端消失,随着体细

端粒在对于染色体的功能

稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5'末端在消除RNA引物后造成的空缺。组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。细胞分裂次数越多,其端粒磨损越多,细胞寿命越短。

端粒酶的结构和功能特点

端粒酶(Telomerase),在细胞中负责端粒的延长的一种酶,是基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端,把DNA复制损失的端粒填补起来,使端粒修复延长,可以让端粒不会因细胞分裂而有所损耗,使得细胞分裂的次数增加。端粒在不同物种细胞中对于保持染色体稳定性和细胞活性有重要作用,端粒

端粒DNA主要功能介绍

端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。端粒DNA主要功能有:第一,保护染色体不被核酸酶降解;第二,防止染色体相互融合;

什么是端粒?端粒的结构特征

端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。端粒的长度反映细胞复制史及复制潜能,被称作细胞寿命

端粒的概念

端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。

端粒酶是如何作用在端粒的?

虽然现在各大牌都在打黑科技牌,都在讲基因,但是真正涉及基因护肤核心的,却少之又少。上次的小黑瓶成分分析里讲到,比菲德这个成分虽好,但还算不上是真正的基因科技,而端粒酶修复素这个成激活分,可以说是护肤品真正踏入基因时代大门的成分。要讲明白这个问题,我们首先需要了解一下护肤跟基因是怎么扯到一起的。这就要

关于DNA复制端粒和端粒酶的内容

  在1941年,美籍印度人麦克林托克(Mc Clintock)就提出端粒(telomere)的假说,指出染色体末端必然存在一种特殊结构——端粒。已知染色体端粒的作用至少有2:a.保护染色体末端免受损伤,使染色体保持稳定;b. 与核纤层相连,使染色体得以定位。  弄清楚DNA复制过程之后,在20世纪

端粒的结构组成

端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。端粒DNA主要功能有:第一,保护染色体不被核酸酶降解;第二,防止染色体相互融合;

端粒的结构解析

  端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。  

端粒的结构解析

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。构成端粒

端粒的结构解析

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。构成端粒

关于端粒的组成

  端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。  端粒DNA主要功能有:  第一,保护染色体不被核酸酶降解;  第二,防止

端粒的研究应用

  端粒长度的维持是细胞持续分裂的前提条件 [1] 。在旺盛分裂或需要保持分裂潜能的细胞,如生殖细胞,干细胞和大多数癌细胞(~85%)中,端粒酶(Telomerase)被激活,它在端粒末端添加端粒序列,保证这些细胞中端粒长度的稳定,维持细胞的持续分裂能力。  细胞中有端粒酶的存在并不能保证端粒的延伸

端粒的结构解析

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。构成端粒

庄小威最新Cell揭示端粒功能新机制

  来自哈佛大学,洛克菲勒大学,霍德华休斯医学院的研究人员发表了题为“Super-Resolution Fluorescence Imaging of Telomeres Reveals TRF2-Dependent T-loop Formation”的文章,利用STORM显微技术,进行了超

什么是端粒?

端粒是一段从染色体末端延伸出来的核苷酸序列,细胞每一次分裂,端粒都会缩短,而端粒完全磨损后,就会最终导致细胞功能受损并衰亡。所以端粒也就是细胞的分裂钟,端粒的长短决定了细胞的分裂次数。而端粒酶是一种使端粒延伸的反转录DNA合成酶。简单来说,就是可以在每次细胞分裂后补偿磨损的端粒,从而稳定端粒的长度,

什么是端粒?

端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。端粒的长度反映细胞复制史及复制潜能,被称作细胞寿命

关于端粒的基本介绍

  端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。  端粒的长度反映细胞复制史及复制潜能,被称作

端粒DNA-序列的概念

端粒DNA 序列(telomere DNA sequence,TEL)端粒的功能是与端粒酶结合,完成染色体末端复制。端粒酶以其自身的RNA 为模板,在染色体端部添加上端粒的重复序列。作为模板的RNA 比较短,含有1.5 个端粒重复单元。端粒结构还能防止染色体融合及降解。端粒是保护DNA分子中的基因的

端粒的结构和作用

端粒(Telomere)是真核细胞染色体末端的特殊结构。人端粒是由6个碱基重复序列(TTAGGG)和结合蛋白组成。端粒有重要的生物学功能,可稳定染色体的功能,防止染色体DNA降解、末端融合,保护染色体结构基因DNA,调节正常细胞生长。

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或骨髓功能衰竭。”来

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或骨髓功能衰竭。”来

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或骨髓功能衰竭。”来

生化与细胞所研究发现端粒酶保护端粒的机制

  端粒是位于真核生物线性染色体末端的由DNA和蛋白质组成的复合物结构,它对于基因组的完整性以及染色体的稳定性发挥着至关重要的作用,端粒DNA长度以及其结构的维持与细胞衰老和癌症发生密切相关。在有端粒酶活性的细胞中,端粒酶途径是端粒DNA长度维持的主要机制;当端粒酶缺失时,细胞也可以通

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  短端粒相关疾病  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或