上海有机所银催化自由基脱羧官能团化反应研究获系列进展
脂肪酸的脱羧卤代反应,即Hunsdiecker反应,是有机化学中官能团转化的基本反应之一。由于羧酸的廉价易得和高稳定性,以及卤代烷在有机合成的重要应用价值,Hunsdiecker反应长期以来受到有机化学家的重视。最早的方法是将羧酸制成严格无水的羧酸银盐,再与溴单质作用,操作不便。随后发展了多种改良法,旨在提高该反应的实用性。但是,这些方法均有着各自的局限性,限制了该反应在有机合成中的应用。 中国科学院上海有机化学研究所天然产物有机合成化学重点实验室李超忠课题组对Hunsdiecker反应开展了三年多的研究,发现以一价银与1,10-啡咯啉形成的络合物Ag(Phen)2OTf为催化剂,脂肪酸在温和条件下与次氯酸叔丁酯作用,即可高效地脱羧氯代(J. Am. Chem. Soc. 2012, 134, 4258–4263.)。这是首例过渡金属催化的脂肪酸Hunsdiecker反应(Eq1)。该方法不仅具有很好的普适性和......阅读全文
新型银催化剂或成防霾神器
据《西伯利亚科研新闻》杂志报道,托姆斯克国立大学的科学家们正在研制一种能将有害颗粒分解成无毒物质的新型银催化剂,以过滤净化空气。 这种催化剂用氧化硅制成直径6到10纳米的纳米管,管内是银和氧化铈合成产物。托姆斯克国立大学催化研究实验室高级研究员马蒙托夫指出:“新型粉状或颗粒催化剂与很多同类
新型量子点催化剂介导的非自由基氧化过程
开发一种绿色、经济和高效的类Fenton催化剂是高级氧化技术领域的研究热点和难点。在原子或量子点尺度操纵催化剂的结构/性质,被认为是一种可以完全暴露其活性位点(理论上100%原子利用率)和控制氧化性活性物种形成的最有效方法。目前,合成如此微小且结构可调的催化剂往往涉及时间、能源和化学试剂密集型的
国内首家国产银催化剂通过考核标定
近日,天津石化烯烃部环氧乙烷乙二醇装置国内首家应用YS8520H银催化剂通过考核标定。 考核标定结果表明,YS8520H银催化剂选择性达到83.4%,比技术协议保证值提高0.4个百分点,在相同的应用周期内比过去使用的YS8520催化剂提高0.3个百分点,标志着该国产化催化剂应用取得了圆满成
上海有机所银催化自由基脱羧官能团化反应研究获系列进展
脂肪酸的脱羧卤代反应,即Hunsdiecker反应,是有机化学中官能团转化的基本反应之一。由于羧酸的廉价易得和高稳定性,以及卤代烷在有机合成的重要应用价值,Hunsdiecker反应长期以来受到有机化学家的重视。最早的方法是将羧酸制成严格无水的羧酸银盐,再与溴单质作用,操作不便。随后发展了多种改
新策略使铁基单原子催化剂上非自由基可直接生成
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/509420.shtm近日,中国科学院大连化学物理研究所研究员王军虎团队和北京师范大学教授敖志敏团队合作,发现了FeN4位点上活化过硫酸盐(PMS)直接生成单线态氧的反应路径,以及其对污染物的高效降解特性,
什么是自由基
所谓自由基,是指带有不配对的电子的分子基因。自由基的各类很多,用来说明衰老发生机制的自由基,主要是超氧自由基、羟自由基和类脂质过氧化自由基。其中,超氧自由基作用的产物,都是强氧化剂,可使类脂质中的不饱和脂肪酸氧化为类脂过氧化物。它们都是引发脂质过氧化自由基反应的氧化剂,在正常情况下,由于生物体内存在
自由基是什么
自由基指化合物的分子在光热等外界条件下,共价键发生均裂而形成的具有不成对电子的原子或基团。在一个化学反应中,或在外界(光、热、辐射等)影响下,分子中共价键断裂,使共用电子对变为一方所独占,则形成离子;若分裂的结果使共用电子对分属于两个原子(或基团),则形成自由基。
自由基显示实验
实验方法原理 实验材料 组织样品试剂、试剂盒 铈生理溶液生理溶液多聚甲醛锇酸实验步骤 1. 组织取下后,立即在含 1 mmol/L 铈生理溶液中切成小块,孵育 5 min。2. 生理溶液漂洗 5 min。3. 4% 多聚甲醛固定、漂洗。4. 锇酸后固定、脱水、包埋等同常规。5. 电镜观察。
如何清除自由基
1、抗衰老防皱:燕麦平日多吃燕麦对皮肤保养延缓衰老的帮助很大。燕麦中含有非常丰富的蛋白质、核黄素和钙等营养成分,是五谷杂粮中超赞的抗氧化食物,经常食用可加快人体新陈代谢,促进氨基酸的合理,从而清除自由基的破坏。2、从源头解决身体衰老:盐藻人体的衰老也是自由基不断侵害细胞,使细胞不断老化的过程,盐藻中
什么是自由基?
自由基,化学上也称为“游离基”,是指化合物的分子在光热等外界条件下,共价键发生均裂而形成的具有不成对电子的原子或基团。(共价键不均匀裂解时,两原子间的共用电子对完全转移到其中的一个原子上,其结果是形成了带正电和带负电的离子,这种断裂方式称之为键的异裂。)
自由基的来源
1. 自动氧化(体内一些分子,例如儿茶酚胺、血红蛋白、肌红蛋白、细胞色素C和巯基在氧化的过程中会产生自由基。)2.酶促氧化(一些经由酶催化的氧化过程会产生自由基。)3. 呼吸带入(吞噬细胞在清除外来微生物时会产生自由基。)4. 药物(例如某些抗生素、抗癌药物会在体内产生自由基,特别是在高氧状态。)5
自由基的来源
1. 自动氧化(体内一些分子,例如儿茶酚胺、血红蛋白、肌红蛋白、细胞色素C和巯基在氧化的过程中会产生自由基。)2.酶促氧化(一些经由酶催化的氧化过程会产生自由基。)3. 呼吸带入(吞噬细胞在清除外来微生物时会产生自由基。)4. 药物(例如某些抗生素、抗癌药物会在体内产生自由基,特别是在高氧状态。)5
自由基的作用
由于自由基含未配对的电子,所以极不稳定(特别是羟自由基),因此会从邻近的分子(包括脂肪、蛋白质、和DNA)上夺取电子,让自己处于稳定的状态。这样一来,邻近的分子又变成一个新的自由基,然后再去夺取电子…。如此连锁反应的结果,让细胞的结构受到破坏,造成细胞功能丧失、基因突变、甚至死亡。但是少量并且控制得
自由基显示实验
H2O2细胞化学法 细胞化学法 实验方法原理 实验材料 组织样品
铱催化醛肟醚与杂芳烃CH稠合反应
多环杂芳烃因其在有机电子学、分子传感、生物成像和超分子化学等诸多领域的广泛引用而备受关注。但是,目前这类分子的合成大多步骤冗长,效率不高,因而大大限制了该领域的快速发展。一直以来合成化学家们不断努力寻求简捷高效地合成该类分子的方法。过渡金属催化C-H键活化策略的蓬勃发展,为该类分子合成路线的设计
唐幸福小组研制成功可去除甲醛的单原子银催化剂
复旦大学环境系唐幸福课题组最近成功研制出一种单原子银催化剂,在低温下就能将甲醛分解成二氧化碳和水。相关研究成果近日在线发表于国际知名学术杂志《应用化学期刊》。 甲醛是一种高毒性的物质,国际癌症研究机构和世界卫生组织都把甲醛界定为一种致癌物质。 目前,市场上除甲醛的产品五花八门。利用化学
自由基的保护机制
1. 酶促机制(1) 超氧化物歧化酶[Superoxide dismutases (SOD)] :催化把两个氧自由基转变为H2O2和O2的反应,抗氧化能力来自其所含之镁、铜、或锌,其浓度可被诱导而提高。(2)过氧化氢酶(Catalase):催化H2O2转变为H2O和O2的反应。(3) 谷胱甘肽过氧化
自由基的保护机制
1.酶促机制(1) 超氧化物歧化酶[Superoxide dismutases (SOD)] :催化把两个氧自由基转变为H2O2和O2的反应,抗氧化能力来自其所含之镁、铜、或锌,其浓度可被诱导而提高。(2)过氧化氢酶(Catalase):催化H2O2转变为H2O和O2的反应。(3) 谷胱甘肽过氧化物
简述自由基的作用
由于自由基含未配对的电子,所以极不稳定(特别是羟自由基),因此会从邻近的分子(包括脂肪、蛋白质、和DNA)上夺取电子,让自己处于稳定的状态。这样一来,邻近的分子又变成一个新的自由基,然后再去夺取电子…。如此连锁反应的结果,让细胞的结构受到破坏,造成细胞功能丧失、基因突变、甚至死亡。 但是少量并
什么是自由基反应?
自由基反应又称游离基反应,是自由基参与的各种化学反应。按共价键均裂方式进行的有机反应称为自由基反应。自由基电子壳层的外层有一个不成对的电子,对增加第二个电子有很强的亲和力,故能起强氧化剂的作用。大气中较重要的为OH-自由基,能与各种微量气体发生反应。在光化学烟雾形成的化学反应中,有许多自由基反应,在
自由基碰撞原子化
大量H·自由基的增加有助于原子化,被认为是自由基碰撞原子化机理的有力论据。Dědina及Rube ška对富燃氢-氧焰所提出的H·自由基可能是火焰反应区内游离基所致。这就很好地解释氢化物原子化时,H2的存在必要条件,以及02的作用和石英管表面的影响。石英在温度为1000℃ 时具有很强的催化作用,H·
中国自由基化学奠基人刘有成:为祖国耕耘自由基
作为中国自由基化学奠基人,刘有成毕生为国,堪为典范。回顾他经历丰富的一生,不仅可以看出他为中国的科学和教育事业作出了突出贡献,而且可以发现他坚定不移的爱国情怀、求真务实的工作态度和勇于创新、乐于奉献的科学精神。 1995年刘有成(前排左二)在中科大接待诺贝尔化学奖得主R.Mar
银染
1.将固定液中的凝胶摇动过夜或至少1小时。2.将保温液中的凝胶轻微振荡2小时。3.去离子水清洗凝胶3次,每次20分钟。4.将硝酸银溶液中凝胶轻微振荡30分钟。5.用去离子水快速洗胶30秒。6.将定影液中凝胶摇动5~30分钟,时间由所加的蛋白质量决定。7.如果已经达到所需的颜色深度,将凝胶放到定影液中
原位自由基检测——顺磁共振波谱对氮自由基性质的研究
近年来,电化学合成领域发展十分迅速,为有机合成化学提供了一条新路径。在电化学合成反应中,反应物可以通过单电子转移过程(Single Electron Transfer, SET)直接从电极上得到一个电子(阴极还原过程)或失去一个电子(阳极氧化过程)。“自由基中间体”在大部分电化学合成反应中都扮演
自由基是如何形成的?
自由基又称游离基,是具有非偶电子的基团或原子,它有两个主要特性:一是化学反应活性高;二是具有磁矩。在一个化学反应中,或在外界(光、热等)影响下,分子中共价键分裂的结果,使共用电子对变为一方所独占,则形成离子;若分裂的结果使共用电子对分属于两个原子(或基团),则形成自由基
体内自由基的来源简介
1. 自动氧化(体内一些分子,例如儿茶酚胺、血红蛋白、肌红蛋白、细胞色素C和巯基在氧化的过程中会产生自由基。)2.酶促氧化(一些经由酶催化的氧化过程会产生自由基。)3. 呼吸带入(吞噬细胞在清除外来微生物时会产生自由基。)4. 药物(例如某些抗生素、抗癌药物会在体内产生自由基,特别是在高氧状态。)5
自由基对细胞的危害
(1)削弱细胞的抵抗力,使身体易受细菌和病菌感染;(2)产生破坏细胞的化学物质,形成致癌物质;(3)阻碍细胞的正常发展,干扰其复原功能,使细胞更新率低于枯萎率;(4)破坏体内的遗传基因(DNA)组织,扰乱细胞的运作及再生功能,造成基因突变,演变成癌症;(5)破坏细胞内的线粒体(能量储存体),造成氧化
自由基的形成方式
在一个化学反应中,或在外界(光、热、辐射等)影响下,分子中共价键断裂,使共用电子对变为一方所独占,则形成离子;若分裂的结果使共用电子对分属于两个原子(或基团),则形成自由基。有机化合物(Organic compounds)发生化学反应时,总是伴随着一部分共价键(covalent bond)的断裂和新
关于自由基的发现介绍
历史上第一个被发现和证实的自由基是由摩西·冈伯格在1900年于密歇根大学发现的三苯甲基自由基,该自由基在隔绝空气的条件下发生二聚,形成“六苯基乙烷” 简单的有机自由基,如甲基自由基、乙基自由基,是在20年代通过气相反应证实的。有机自由基作为活泼中间体,是在30年代由D.H.海伊、W.A.沃特斯
自由基的概念和典型
自由基,化学上也称为“游离基”,是指化合物的分子在光热等外界条件下,共价键发生均裂而形成的具有不成对电子的原子或基团。(共价键不均匀裂解时,两原子间的共用电子对完全转移到其中的一个原子上,其结果是形成了带正电和带负电的离子,这种断裂方式称之为键的异裂。)在书写时,一般在原子符号或者原子团符号旁边加上