寡核苷酸阵列的概念
微阵列(DNA Microarray)也叫寡核苷酸阵列(Oligonucleotide array),是人类基因组计划(Human Genome Project,HGP)的逐步实施和分子生物学的迅猛发展及运用的产物,它是生物学家受到计算机芯片制造和广为应用的启迪,融微电子学、生命科学、计算机科学和光电化学为一体,在原来核酸杂交(Northern、Southern)的基础上发展起来的一项新技术,它是第三次革命(基因组革命)中的主要技术之一,是生物芯片中的一种。该技术的原理是在固体表面上集成已知序列的基因探针,被测生物细胞或组织中大量标记的核酸序列与上述探针阵列进行杂交,通过检测相应位置杂交探针,实现基因信息的快速检测。......阅读全文
关于DNA微阵列的简介
DNA微阵列(DNA microarray)又称DNA阵列或DNA芯片,比较通俗的名字是基因芯片(gene chip)。是一块带有DNA微阵列(micorarray)涂层的特殊玻璃片,在数平方厘米之面积上安装数千或数万个核酸探针,经由一次测验,即可提供大量基因序列相关资讯。它是基因组学和遗传学研
DNA微阵列技术的特点
DNA微阵列技术最突出的特点就是可一次性检测多种样品,获得多种基因的差别表达图谱,已成功地运用cDNA微阵列同时检测l万多个基因的表达。因此,DNA微阵列是对不同材料中的多个基因表达模式进行平行对比分析的一种高产出的、新的基因分析方法。与传统研究基因差异表达的方法相比,它具有微型化、快速、准确、灵敏
DNA微阵列技术的应用
一、检测表达状况,发现新基因。 Wodicka1997年将覆盖酵母基因组全部ORF的26万种25mer探针,阵列于4张玻片,每张6.5万个探针,将酵母分加富和低限两组培养,研究不同生长条件下基因表达水平,结果表明90%的基因在两种条件下均表达,36种mRNA更多地在加富培养下表达,140种mR
反义寡核苷酸简介
反义寡核苷酸(AON)是一类通过序列特异地与靶基因DNA或mRNA结合而抑制该基因表达,在基因水平调控的分子药物。而硫代反义寡聚核苷酸(phosphorothioate oligonucleotides,简称PS2ODNs),是用硫原子将磷酸骨架上的非成键氧原子取代后形成的一类新的寡核苷酸类似物
筛选寡核苷酸针的原则
一.长18~50nt,较长探针杂交时间较长,合成量低;较短探针特异性会差些。二.碱基成分:G+C含量为40%~60%,超出此范围则会增加非特异杂交。三.探针分子内不应存在互补区,否则会出现抑制探针杂交的“发夹”状结构。四.避免单一碱基的重复出现(不能多于4个),如-CCCCC-。五.一旦选定某一序更
寡核苷酸探针的制备方法
寡核苷酸探针是人工合成的,与已知基因DNA互补的,长度可从十几到几十个核苷酸的片段。如仅知蛋白质的氨基酸顺序量,也可以按氨基酸的密码推导出核苷酸序列,并用化学方法合成。
关于寡核苷酸的应用介绍
寡核苷酸常用来作为探针确定DNA或RNA的结构,用于基因芯片、电泳、荧光原位杂交等过程中 。 寡核苷酸合成的DNA(脱氧核糖核酸)可以用于链聚合反应,能放大确定几乎所有DNA的片段,在这个过程中寡核苷酸是作为引物,和DNA 中标记的互补片段结合,作成DNA的复制品。 调控寡核苷酸用于抑制R
寡核苷酸探针的来源介绍
DNA探针根据其来源有3种:一种来自基因组中有关的基因本身,称为基因组探针(genomic probe);另一种是从相应的基因转录获得了mRNA,再通过逆转录得到的探针,称为cDNA探针(cDNA probe)。与基因组探针不同的是,cDNA探针不含有内含子序列。此外,还可在体外人工合成碱基数不
寡核苷酸介导的诱变实验
基本方案 实验材料 大肠杆菌 试剂、试剂盒
寡核苷酸介导的诱变实验
用突变的寡核苷酸引导模板的合成,从而改变DNA序列,突变效率可达50~80%。实验材料大肠杆菌试剂、试剂盒PEGTEATP寡核苷酸诱变引物T4多核苷酸激酶EDTASSC仪器、耗材水浴锅电泳仪培养箱实验步骤1. 将一个单链噬菌体产生的噬斑转移至含有1 ml 灭菌TY培养基的1.5 ml 微量离心管中
寡核苷酸探针的用途介绍
寡核苷酸探针还有一个重要用途。在用于检测单个碱基差异时尚可采用一种称为寡核苷酸限制(oligonucleotiderestriction)的技术。该技术只有在突变点位于某一限制性内切酶识别位点时才有效。例如,镰刀状红细胞贫血是因β珠蛋白基因的第6个寡码子由GAG变成GTG,从而导致所编码氨基酸由酪氨
筛选寡核苷酸针的原则
一.长18~50nt,较长探针杂交时间较长,合成量低;较短探针特异性会差些。二.碱基成分:G+C含量为40%~60%,超出此范围则会增加非特异杂交。三.探针分子内不应存在互补区,否则会出现抑制探针杂交的“发夹”状结构。四.避免单一碱基的重复出现(不能多于4个),如-CCCCC-。五.一旦选定某一序更
寡核苷酸介导的诱变实验
实验材料 大肠杆菌试剂、试剂盒 PEGTEATP寡核苷酸诱变引物T4多核苷酸激酶EDTASSC仪器、耗材 水浴锅电泳仪培养箱实验步骤 1. 将一个单链噬菌体产生的噬斑转移至含有1 ml 灭菌TY培养基的1.5 ml 微量离心管中,60℃温育5 min,以杀灭细菌细胞,剧烈振荡以释放琼脂中的噬菌体,
筛选寡核苷酸针的原则
筛选寡核苷酸针的原则下面是筛选寡核苷酸针的一些原则。一.长18~50nt,较长探针杂交时间较长,合成量低;较短探针特异性会差些。二.碱基成分:G+C含量为40%~60%,超出此范围则会增加非特异杂交。三.探针分子内不应存在互补区,否则会出现抑制探针杂交的“发夹”状结构。四.避免单一碱基的重复出现(不
基因芯片技术及其研究现状和应用前景(一)
摘要:基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术,是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法,将大量DNA探针片段有序地固化予支持物的表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,就可得出该样品的遗传信息。基因芯片技术
合成的寡核苷酸探针的优点
合成的寡核苷酸探针具有一些独特的优点:一.由于链短,其序列复杂度低,分子量小,所以和等量靶位点完全杂交的时间比克隆探针短,如20nt的寡核苷酸探针在浓度为100ng/ml,靶序列为1~100pg、1kb片段或3×10-18~3×10-16mol/L时,达到最大程度的杂交只需10min,而用2kb的克
合成的寡核苷酸探针的优点
合成的寡核苷酸探针具有一些独特的优点:一.由于链短,其序列复杂度低,分子量小,所以和等量靶位点完全杂交的时间比克隆探针短,如20nt的寡核苷酸探针在浓度为100ng/ml,靶序列为1~100pg、1kb片段或3×10-18~3×10-16mol/L时,达到最大程度的杂交只需10min,而用2kb的克
合成的寡核苷酸探针的优点
合成的寡核苷酸探针具有一些独特的优点:一.由于链短,其序列复杂度低,分子量小,所以和等量靶位点完全杂交的时间比克隆探针短,如20nt的寡核苷酸探针在浓度为100ng/ml,靶序列为1~100pg、1kb片段或3×10-18~3×10-16mol/L时,达到最大程度的杂交只需10min,而用2kb的克
DNA微阵列技术特点
DNA微阵列技术最突出的特点就是可一次性检测多种样品,获得多种基因的差别表达图谱,已成功地运用cDNA微阵列同时检测l万多个基因的表达。因此,DNA微阵列是对不同材料中的多个基因表达模式进行平行对比分析的一种高产出的、新的基因分析方法。与传统研究基因差异表达的方法相比,它具有微型化、快速、准确、灵敏
基因芯片实验原理与方法(一)
一、目的本实验的目的是学会cDNA芯片的使用方法。了解各种基因芯片的基本原理和优缺点。基因芯片这一技术方法在1991年的Science杂志上被首次提出,其高通量、并行检测的特点适应了分析人类基因组计划所提供的海量的基因序列信息的需要,可以说,人类基因组计划是基因芯片技术发展的原因,而对深人研究基因突
生物信息学技术:基因芯片实验原理与方法
本实验的目的是学会cDNA芯片的使用方法。了解各种基因芯片的基本原理和优缺点。基因芯片这一技术方法在1991年的Science杂志上被提出,其高通量、并行检测的特点适应了分析人类基因组计划所提供的海量的基因序列信息的需要,可以说,人类基因组计划是基因芯片技术发展的原因,而对深人研究基因突变和基因表达
阵列处理机的技术内容
数组处理机的规模可以很大,但也可以小到微型计算机的规模。80年代,利用超大规模集成电路技术,一个数组处理机可以集成在一个半导体硅片上。数组处理机的运算速度可以高到与巨型计算机相比;也可以比较低,如每秒钟运算100万次。 数组处理机需要与一台主机一起运用。它的运算速度比主机大约快一个数量级或更多
概述DNA微阵列技术的应用
一 、检测基因表达水平及识别基因序列。 Schena等1996年用拟南芥光调基因微阵列,以不同器官中的mRNA为探针,检测其基因表达水平,结果表明叶mRNA的表达水平是根的500倍。Shelon等1996年将酿酒酵母基因组DNA克隆制成微阵列,用6条最大染色体和10条最小染色体DNA探针分别标
DNA微阵列技术的主要流程
①芯片的制备:DNA芯片的制备方法有光引导原位合成法、化学喷射法、接触式点涂法、原位DNA控制合成、非接触微机械印刷法TOPSPOT和软光刻复制等。已能将40万种不同的DNA分子放在1 cm2的芯片上。②样品的制备:包括样品DNA或RNA的分离提纯和用PCR技术对靶基因片段扩增以及对靶基因标记。③杂
DNA微阵列技术的技术特点
DNA微阵列技术最突出的特点就是可一次性检测多种样品,获得多种基因的差别表达图谱,已成功地运用cDNA微阵列同时检测l万多个基因的表达。因此,DNA微阵列是对不同材料中的多个基因表达模式进行平行对比分析的一种高产出的、新的基因分析方法。与传统研究基因差异表达的方法相比,它具有微型化、快速、准确、灵敏
DNA微阵列技术的主要流程
DNA微阵列技术的主要流程:①芯片的制备:DNA芯片的制备方法有光引导原位合成法、化学喷射法、接触式点涂法、原位DNA控制合成、非接触微机械印刷法TOPSPOT和软光刻复制等。已能将40万种不同的DNA分子放在1 cm2的芯片上。②样品的制备:包括样品DNA或RNA的分离提纯和用PCR技术对靶基因片
阵列构筑技术的原理和特点
基于氧化铝模板,通过气相法、电沉积、原位溶胶-凝胶等技术,构筑了各种纳米线、纳米管、异质结纳米线等的有序排列的阵列体系。发展了催化诱导CVD技术,在孔内预先置入金属纳米颗粒作为催化剂,通过CVD过程沿孔内生长出单晶Si,GaN,等纳米线阵列体系;发展了基于模板的电沉积技术,成功地获得了一系列铁磁-非
关于阵列技术的奇异特性介绍
在锐钛相TiO2纳米线有序阵列中观察到室温条件下三个新的荧光带,峰位分别为425nm, 465nm和525nm。揭示三个荧光带产生的来自于自束缚激子、氧空位和F+中心。利用电沉积法成功地在氧化铝模板中制备了不同直径 Bi 纳米线阵列。发现20nm 的Bi纳米线电阻曲线在50 K出现最大值,50nm
DNA微阵列技术的主要流程
①芯片的制备:DNA芯片的制备方法有光引导原位合成法、化学喷射法、接触式点涂法、原位DNA控制合成、非接触微机械印刷法TOPSPOT和软光刻复制等。已能将40万种不同的DNA分子放在1 cm2的芯片上。②样品的制备:包括样品DNA或RNA的分离提纯和用PCR技术对靶基因片段扩增以及对靶基因标记。③杂
DNA微阵列技术的主要流程
DNA微阵列技术的主要流程:①芯片的制备:DNA芯片的制备方法有光引导原位合成法、化学喷射法、接触式点涂法、原位DNA控制合成、非接触微机械印刷法TOPSPOT和软光刻复制等。已能将40万种不同的DNA分子放在1 cm2的芯片上。②样品的制备:包括样品DNA或RNA的分离提纯和用PCR技术对靶基因片