关于NADH的氧化的基本内容介绍
体内很多物质氧化分解产生NADH,线粒体内生成的NADH可直接通过呼吸链进行氧化磷酸化,而胞液中生成的NADH由于不能自由透过线粒体内膜,故需通过某种转运机制,将氢转移到线粒体内,重新生成NADH或FADH2后再参加氧化磷酸化。这种转运机制主要有α-磷酸甘油穿梭和苹果酸穿梭。 (一)3-磷酸甘油(α-磷酸甘油)穿梭系统 该穿梭系统主要存在于肌肉和神经组织,它是通过α-磷酸甘油将胞液中NADH的氢带入线粒体内,具体过程如下: 当胞液中NADH浓度升高时,磷酸二羟丙酮在胞液α-磷酸甘油脱氢酶(辅酶为NAD)催化下由NADH+H供氢生成α-磷酸甘油,后者进入线粒体后在线粒体内α-磷酸甘油脱氢酶(辅酶为FAD)的催化下重新生成磷酸二羟丙酮和FADH2。磷酸二羟丙酮穿出线粒体外可继续利用。生成的FADH2经呼吸链氧化磷酸化,这种穿梭作用可生成1.5分子ATP。 (二)苹果酸穿梭系统 又称苹果酸-天冬氨酸穿梭系统,主要存在于肝......阅读全文
关于NADH的氧化的基本内容介绍
体内很多物质氧化分解产生NADH,线粒体内生成的NADH可直接通过呼吸链进行氧化磷酸化,而胞液中生成的NADH由于不能自由透过线粒体内膜,故需通过某种转运机制,将氢转移到线粒体内,重新生成NADH或FADH2后再参加氧化磷酸化。这种转运机制主要有α-磷酸甘油穿梭和苹果酸穿梭。 (一)3-磷酸甘
关于胞液氧化的基本内容介绍
糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。 α-磷酸甘油穿梭作用 这种作用主要存在于脑、
关于NADH的研究历史介绍
1906年,诺贝尔奖得者亚瑟·哈登发现NADH 1935年,正式拉开NADH功能研究序幕 1987年,NADH开启临床治疗序幕 1994年,乔治·柏克梅尔教授研发“稳定型NADH” 21世纪NADH广泛应用于亚健康、衰老、防癌等研究领域 2015年,高稳定性的NADH膳食补充剂走向中国
关于NADH的基本信息介绍
NADH(Nicotinamide adenine dinucleotide)是一种化学物质,是烟酰胺腺嘌呤二核苷酸的还原态,还原型辅酶Ⅰ。N指烟酰胺,A指腺嘌呤,D是二核苷酸。 因NADH主要在细胞中参与物质和能量代谢,产生于糖酵解和细胞呼吸作用中的柠檬酸循环,并作为生物氢的载体和电子供体,
关于NADH的生理功能的介绍
改善能量水平 NADH不仅作为有氧呼吸作用中重要的辅酶,NADH的[H]也携带大量能量。研究已经证实,细胞外使用NADH能促进细胞内ATP水平的上升,表明NADH能穿透细胞膜并提升细胞内的能量水平 。从宏观上而言,外源性补充NADH有助于恢复体力、增强食欲。并且NADH对大脑能量水平的提高也有
关于氢氧化钾的基本内容介绍
氢氧化钾,是一种无机化合物,化学式为KOH,是常见的无机碱,具有强碱性,0.1mol/L溶液的pH为13.5,溶于水、乙醇,微溶于乙醚,极易吸收空气中水分而潮解,吸收二氧化碳而成碳酸钾,主要用作生产钾盐的原料,也可用于电镀、印染等。 氢氧化钾的物理性质: 密度:1.450g/cm3(20℃)
关于氧化锆分析仪的基本内容介绍
对于众多的工业过程来说,精确的氧气及可燃性气体测量十分关键。这个可以是工业流程的烟气排放合格检测,可以是石油炼化企业为防止可燃性气体积聚产生的安全隐患做监测,也可以是对燃料气体的最佳燃烧效率的控制。鉴于不同应用的需求往往有很大,各大厂家会提供多种分析仪以确保用户总可以选择最适合的技术方案。 氧
关于氢氧化钡的基本内容介绍
氢氧化钡,是一种无机化合物,化学式为Ba(OH)2,为白色结晶性粉末,可溶于水 [2]、乙醇,易溶于稀酸,主要用于制特种肥皂、杀虫剂,也用于硬水软化、甜菜糖精制、锅炉除垢、玻璃润滑等。 用途:主要用于制特种肥皂、杀虫剂,也用于硬水软化、甜菜糖精制、锅炉除垢、玻璃润滑等。 安全术语: S26
关于NADH对细胞保护的相关介绍
细胞保护是指某些物质具有防止或减少毒性物质对正常细胞损伤的能力,细胞受损过度就会影响生物机体功能发挥。研究表明:核辐射、生物和化学毒剂能引起细胞碱基损伤,DNA链断裂和蛋白质交联生物和化学毒素不仅作用于DNA,还可直接作用于线粒体的呼吸链、生物氧化的三羧酸循环,通过抑制生命活动过程中的基本生物氧
nadh的氧化呼吸链是由什么组成的
氧化呼吸链由4种具有传递电子能力的复合体组成,包括复合体Ⅰ(NADH-COQ)、复合体Ⅱ(琥珀酸-COQ)、复合体Ⅲ(COQH2-细胞色素c)、复合体Ⅳ(细胞色素c-O2)。氧化呼吸链,真核细胞ATP生成主要发生在线粒体中。营养物质代谢脱下的成对氢原子以还原当量形式存在,再通过多种酶和辅酶催化的氧化
关于NADH的内容简介
NADH与NAD+是细胞中的一对氧化还原对,NADH是是辅酶1 NAD的还原形式,NAD+是其氧化形式。在氧化还原反应中,NADH作为氢和电子的供体,NAD+作为氢和电子的受体,参与呼吸作用、光合作用、酒精代谢等生理过程。它们作为生物体内很多氧化还原反应的辅酶参与生命活动,并相互转化。 无氧条
NADH的安全性介绍
NADH在大鼠、犬身上进行了动物毒性测试,即使在高浓度下,NADH 也没有出现毒性或副作用 [10-11] 。在世界最大、最完整的药物和药物靶标资源库Drug Bank上,NADH被批准为一种营养品。作为膳食补充剂 [12] ,NADH已经在欧美市场销售20余年,根据FDA Adverse Ev
NADH和NADH+H+的区别
区别1、NADH产生于糖酵解和细胞呼吸作用中的柠檬酸循环。2、NADH+H+ 是氧化态。1分子NADH+H+在氧化磷酸化过程中理论上生成3分子ATP(常用于计算中)。NADPH是还原氢 也就是高二时说的[H] 是一种辅酶,叫还原型辅酶Ⅱ NADP+ 是还原氢失去电子的状态,也叫氧化型辅酶Ⅱ(NADP
脂质过氧化的基本内容介绍
氧自由基反应和脂质过氧化反应在机体的新陈代谢过程中起着重要的作用,正常情况下两者处于协调与动态平衡状态,维持着体内许多生理生化反应和免疫反应。 一旦这种协调与动态平衡产生紊乱与失调,就会引起一系列的新陈代谢失常和免疫功能降低,形成氧自由基连锁反应,损害生物膜及其功能,以致形成细胞透明性病变、纤
关于纤毛的基本内容介绍
纤毛(cilium):是细胞游离面伸出的能摆动的较长的突起,比微绒毛粗且长,在光镜下能看见。一个细胞可有几百根纤毛。纤毛长约5-10μm,粗约0.2μm,根部有一个致密颗粒,称基体(basalbody)。纤毛具有一定方向节律性摆动的能力。许多纤毛的协调摆动像风吹麦浪起伏,把粘附在上皮表分泌物和颗
关于登革热的基本内容介绍
登革热(dengue)是登革病毒经蚊媒传播引起的急性虫媒传染病。登革病毒感染后可导致隐性感染、登革热、登革出血热,登革出血热我国少见。典型的登革热临床表现为起病急骤,高热,头痛,肌肉、骨关节剧烈酸痛、部分患者出现皮疹、出血倾向、淋巴结肿大、白细胞计数减少、血小板减少等。本病主要在热带和亚热带地区
关于转氨酶的基本内容介绍
转氨酶(外文名:transaminase)是催化氨基酸与酮酸之间氨基转移的一类酶,普遍存在于动植物组织和微生物中。 转氨酶是人体肝脏正常运转过程中必不可少的“催化剂”,是肝脏的“晴雨表”。[1]肝细胞是转氨酶的主要生存地,当肝细胞受损,转氨酶便会释放到血液里,使血清转氨酶升高。 转氨酶是人体
关于乙醇的基本内容介绍
乙醇(ethanol)是一种有机化合物,结构简式为CH3CH2OH或C2H5OH,分子式为C2H6O,俗称酒精。 乙醇在常温常压下是一种易挥发的无色透明液体,低毒性,纯液体不可直接饮用。乙醇的水溶液具有酒香的气味,并略带刺激性,味甘。乙醇易燃,其蒸气能与空气形成爆炸性混合物。乙醇能与水以任意比
关于乳糖的基本内容介绍
乳糖是人类和哺乳动物乳汁中特有的碳水化合物,是由葡萄糖和半乳糖组成的双糖,分子式为C12H22O11。在婴幼儿生长发育过程中,乳糖不仅可以提供能量,还参与大脑的发育进程。 乳糖主要用于制造婴儿食品和配制药物,例如制药片、药粉时用作稀释剂。
关于盐析的基本内容介绍
盐析(salting out)是指在蛋白质水溶液中加入中性盐,随着盐浓度增大而使蛋白质沉淀出来的现象。中性盐是强电解质,溶解度又大,在蛋白质溶液中,一方面与蛋白质争夺水分子,破坏蛋白质胶体颗粒表面的水膜;另一方面又大量中和蛋白质颗粒上的电荷,从而使水中蛋白质颗粒积聚而沉淀析出。常用的中性盐有硫酸
关于羧酸的基本内容介绍
羧酸的官能团是羧基,除甲酸外,都是由烃基和羧基两部分组成。根据烃基的结构不同,分为脂肪酸和芳香酸。 羧基与脂肪烃基相连结者,称为脂肪酸;脂肪酸又根据烃基的不饱和度分为饱和脂肪酸和不饱和脂肪酸。若脂肪烃基中不含有不饱和键,则称为饱和脂肪酸;若脂肪烃基中含有不饱和键,则称为不饱和脂肪酸。羧基与芳香
关于油脂的基本内容介绍
油脂(Fat)即甘油三酯或称之为脂酰甘油(triacylglycerol),是油和脂肪的统称。一般将常温下呈液态的油脂称为油,而将其呈固态时称为脂肪。 脂肪是由甘油和脂肪酸脱水合成而形成的。脂肪酸的羧基中的—OH 与甘油羟基中的—H 结合而失去一分子水,于是甘油与脂肪酸之间形成酯键,变成了脂肪
关于果胶的基本内容介绍
果胶是一种多糖,其组成有同质多糖和杂多糖两种类型。它们多存在于植物细胞壁和细胞内层,大量存在于柑橘、柠檬、柚子等果皮中。呈白色至黄色粉状,相对分子质量约20000~400000,无味。在酸性溶液中较在碱性溶液中稳定,通常按其酯化度分为高酯果胶及低酯果胶。高酯果胶在可溶性糖含量≥60%、pH=2.
关于肉瘤的基本内容介绍
来源于间叶组织(包括结缔组织和肌肉)的恶性肿瘤称为“肉瘤”,多发生于皮肤、皮下、骨膜及长骨两端。骨肉瘤以青年人为多,好发于四肢长骨之两端,尤以股骨下端、胫骨上端及肱骨上端最多见。骨肉瘤发展迅速,病程短,开始在皮质内生长,可逐渐向骨髓腔发展,有时向外突破骨膜,侵入周围软组织,易引起病理性骨折,常见
关于胃腺的基本内容介绍
胃壁粘膜固有层中的腺体,为单管状腺或分枝管状腺,根据分布位置分为贲门腺、胃底腺和幽门腺。“胃腺”有时也用以专指胃底腺。分泌胃液的腺体。分布在胃粘膜内,包括贲门腺、胃底腺和幽门腺。主要有3种细胞:主细胞、壁细胞和粘液细胞。它们分别分泌胃蛋白酶原、盐酸和粘液。壁细胞还分泌内因子,它与维生素B12吸收
关于黄疸的基本内容介绍
黄疸是常见症状与体征,其发生是由于胆红素代谢障碍而引起血清内胆红素浓度升高所致。临床上表现为巩膜、黏膜、皮肤及其他组织被染成黄色。因巩膜含有较多的弹性硬蛋白,与胆红素有较强的亲和力,故黄疸患者巩膜黄染常先于黏膜、皮肤而首先被察觉。当血清总胆红素在17.1~34.2μmol/L,而肉眼看不出黄疸时
关于喉癌的基本内容介绍
喉的恶性肿瘤以鳞状细胞癌多见。按其发生的部位不同,临床上分为声门上、声门、声门下3型。声门型常位于声带的中段或前段,所以很早就有声嘶症状。喉镜检查,可见一侧声带充血、表面粗糙不平、呈颗粒状隆起或乳头样增生,活检可证实,诊断比较容易。声门上及声门下型,其早期症状往往不是声嘶,诊断较为困难。
关于肽的基本内容介绍
肽(peptide)是α-氨基酸以肽键连接在一起而形成的化合物,它也是蛋白质水解的中间产物。 一般肽中含有的氨基酸的数目为二到九,根据肽中氨基酸的数量的不同,肽有多种不同的称呼:分别叫二肽、三肽、四肽、五肽等。由三个或三个以上氨基酸分子组成的肽叫多肽,它们的分子量低于10,000Da,能透过半
关于醛固酮的基本内容介绍
醛固酮(Aldosterone)是一种增进肾脏对于离子及水分子再吸收作用的类固醇类激素(盐皮质激素家族),化学式为C21H28O5,主要作用于肾脏,是增进肾脏对于离子及水分再吸收作用的一种激素。 醛固酮(aldosterone),分子式为C21H28O5,是肾上腺皮质激素的一种。 具有代表性的
关于α螺旋的基本内容介绍
α-螺旋(α-helix)是蛋白质二级结构的主要形式之一。指多肽链主链围绕中心轴呈有规律的螺旋式上升,每3.6 个氨基酸残基螺旋上升一圈,向上平移0.54nm,故螺距为0.54nm,两个氨基酸残基之间的距离为0.15nm。螺旋的方向为右手螺旋。氨基酸侧链R基团伸向螺旋外侧,每个肽键的肽键的羰基氧