关于脂肪酸丙二酰CoA的生成的介绍
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化转变成丙二酰CoA(或称丙二酸单酰CoA),乙酰CoA羧化酶存在于胞液中,其辅基为生物素,在反应过程中起到携带和转移羧基的作用。该反应机理类似于其他依赖生物素的羧化反应,如催化丙酮酸羧化成为草酰乙酸的反应等。 由乙酰CoA羧化酶催化的反应为脂肪酸合成过程中的限速步骤。此酶为一别构酶,在变构效应剂的作用下,其无活性的单体与有活性的多聚体(由100个单体呈线状排列)之间可以互变。柠檬酸与异柠檬酸可促进单体聚合成多聚体,增强酶活性,而长链脂肪酸可加速解聚,从而抑制该酶活性。乙酰CoA羧化酶还可通过依赖于cAMP的磷酸化及去磷酸化修饰来调节酶活性。此酶经磷酸化后活性丧失,如胰高血糖素及肾上腺素等能促进这种磷酸化作用,从而抑制脂肪酸合成;而胰岛素则能促进酶的去磷酸化作用,故可增强乙酰CoA羧化酶活性,加速脂肪酸合成。 同时乙酰CoA羧化酶也是诱导酶,长......阅读全文
关于脂肪酸丙二酰CoA的生成的介绍
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化转变成丙二酰CoA(或称丙二酸单酰CoA),乙酰CoA羧化酶存在于胞液中,其辅基为生物素,在反应过程中起到携带和转移羧基的作用。该反应机理类似于其他依赖生物素的羧化反应,如催化丙酮酸羧化成为草酰乙酸的反应等。 由乙
关于丙二酰CoA的生成的介绍
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化转变成丙二酰CoA(或称丙二酸单酰CoA),乙酰CoA羧化酶存在于胞液中,其辅基为生物素,在反应过程中起到携带和转移羧基的作用。该反应机理类似于其他依赖生物素的羧化反应,如催化丙酮酸羧化成为草酰乙酸的反应等。 由乙
丙二酰CoA的生成
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化转变成丙二酰CoA(或称丙二酸单酰CoA),乙酰CoA羧化酶存在于胞液中,其辅基为生物素,在反应过程中起到携带和转移羧基的作用。该反应机理类似于其他依赖生物素的羧化反应,如催化丙酮酸羧化成为草酰乙酸的反应等。由乙酰CoA
软脂酸的制备方法丙二酰CoA的生成
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化转变成丙二酰CoA(或称丙二酸单酰CoA),乙酰CoA羧化酶存在于胞液中,其辅基为生物素,在反应过程中起到携带和转移羧基的作用。该反应机理类似于其他依赖生物素的羧化反应,如催化丙酮酸羧化成为草酰乙酸的反应等。由乙酰CoA
脂肪酸合成丙二酰辅酶A
在脂肪酸合成中,它为脂肪酸提供二碳单位,将二碳单位加到延长中的脂肪酸碳链中。丙二酰A是在乙酰辅酶A羧化酶的作用下使乙酰辅酶A羧化而形成的。一分子乙酰辅酶A与一分子碳酸氢盐相结合,其中需要三磷酸腺苷以提供能量。丙二酰辅酶A被一种称作丙二酰辅酶A:酰基载体蛋白转酰基酶(MCAT)用于合成脂肪酸。MCAT
丙二酰辅酶A对脂肪酸合成的作用
在脂肪酸合成中,它为脂肪酸提供二碳单位,将二碳单位加到延长中的脂肪酸碳链中。 丙二酰A是在乙酰辅酶A羧化酶的作用下使乙酰辅酶A羧化而形成的。一分子乙酰辅酶A与一分子碳酸氢盐相结合,其中需要三磷酸腺苷以提供能量。 丙二酰辅酶A被一种称作丙二酰辅酶A:酰基载体蛋白转酰基酶(MCAT)用于合成脂肪
小鼠丙二酰辅酶A(MCoA)ELISA试剂盒使用说明
本试剂仅供研究使用目的:本试剂盒用于测定小鼠血清,血浆及相关液体样本中小鼠丙二酰辅酶A(M-CoA)含量。实验原理:本试剂盒应用双抗体夹心法测定标本中小鼠丙二酰辅酶A(M-CoA)水平。用纯化的小鼠丙二酰辅酶A(M-CoA)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入小鼠丙二酰辅酶A(M
脂肪的生物合成
脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合
关于脂类的生物合成介绍
脂肪酸 脂肪酸的生物合成biosynthesis of fattyacids 高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化
脂肪酸氧化的β氧化前提的介绍
1>脂肪酸的活化 和葡萄糖一样,脂肪酸参加代谢前也先要活化。其活化形式是硫酯——脂肪酰CoA,催化脂肪酸活化的酶是脂酰CoA合成酶(acyl CoA synthetase)。 活化后生成的脂酰CoA极性增强,易溶于水;分子中有高能键、性质活泼;是酶的特异底物,与酶的亲和力大,因此更容易参加反
脂肪酸代谢概述(一)
一、脂肪酸的氧化分解 脂肪酸在有充足氧供给的情况下,可氧化分解为CO2和H2O,释放大量能量,因此脂肪酸是机体主要能量来源之一。肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。 (一)脂肪酸的β-氧化过程 此过程可分为活化,转移,β-氧化共三个阶段。 1.脂肪酸的活化
丙二酰辅酶A的基本信息介绍
丙二酰辅酶A是一种有机物,化学式为C24H37LiN7O19P3S,是一种辅酶A的衍生物。 该化合物在脂肪酸的生物合成的延伸阶段以及聚酮化合物的生物合成中起到重要作用。 丙二酰辅酶A同时也被用于使α-酮戊二酸跨过线粒体膜转运到线粒体基质中。
关于丙酸氧化的基本介绍
奇数碳原子脂肪酸,经过β-氧化除生成乙酰CoA外还生成一分子丙酰CoA,某些氨基酸如异亮氨酸、蛋氨酸和苏氨酸的分解代谢过程中有丙酰CoA生成,胆汁酸生成过程中亦产生丙酰CoA。丙酰CoA经过羧化反应和分子内重排,可转变生成琥珀酰CoA,可进一步氧化分解,也可经草酰乙酸异生成糖的反应过程。
简述脂肪酸氧化的其他途径分解
(1)奇数碳原子脂肪酸的氧化。人体含微量奇数碳脂肪酸,许多植物、海洋生物和石油酵母等含一定量的奇数碳脂肪酸。其β-氧化除生成乙酰CoA外,还生成1分子丙酰CoA,后者在β-羧化酶及异构酶的作用下生成琥珀酰CoA,经TCA途径彻底氧化。 (2)不饱和脂肪酸的氧化。机体中约一半以上的脂肪酸是不
脂肪酸氧化的途径
(1)奇数碳原子脂肪酸的氧化。人体含微量奇数碳脂肪酸,许多植物、海洋生物和石油酵母等含一定量的奇数碳脂肪酸。其β-氧化除生成乙酰CoA外,还生成1分子丙酰CoA,后者在β-羧化酶及异构酶的作用下生成琥珀酰CoA,经TCA途径彻底氧化。 (2)不饱和脂肪酸的氧化。机体中约一半以上的脂肪酸是不饱和脂肪酸
脂肪酸脂肪酸氧化的其他途径
(1)奇数碳原子脂肪酸的氧化。人体含微量奇数碳脂肪酸,许多植物、海洋生物和石油酵母等含一定量的奇数碳脂肪酸。其β-氧化除生成乙酰CoA外,还生成1分子丙酰CoA,后者在β-羧化酶及异构酶的作用下生成琥珀酰CoA,经TCA途径彻底氧化。 (2)不饱和脂肪酸的氧化。机体中约一半以上的脂肪酸是不饱和
脂肪酸氧化的途径
(1)奇数碳原子脂肪酸的氧化。人体含微量奇数碳脂肪酸,许多植物、海洋生物和石油酵母等含一定量的奇数碳脂肪酸。其β-氧化除生成乙酰CoA外,还生成1分子丙酰CoA,后者在β-羧化酶及异构酶的作用下生成琥珀酰CoA,经TCA途径彻底氧化。 (2)不饱和脂肪酸的氧化。机体中约一半以上的脂肪酸是不饱和脂肪酸
脂肪酸代谢概述(二)
(一)软脂酸的生成 脂肪酸的合成首先由乙酰CoA开始合成,产物是十六碳的饱和脂肪酸即软酯酸(palmitoleic acid)。 1.乙酰CoA的转移 乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须
脂肪酸合成的起始原料
脂肪酸合成的起始原料是乙酰coa,它主要来自糖酵解产物丙酮酸,脂肪酸的合成是在胞液中。先说说饱和脂肪酸的合成:1.乙酰辅酶a的转运:脂肪酸的合成是在胞液中,而乙酰coa是在线粒体内,它们不能穿过线粒体内膜,需通过转运机制进入胞液。三羧酸循环中的柠檬酸可穿过线粒体膜进入胞液,然后在柠檬酸裂解酶的作用下
脂肪酸氧化分解的限速酶是什么
脂肪酸氧化分解的限速酶是肉碱脂酰转移酶Ⅰ。肉碱脂酰转移酶Ⅰ是脂肪酸氧化的限速酶,脂酰CoA进入线粒体是脂肪酸氧化的主要限速步骤。机体在饥饿、高脂低糖膳食或糖尿病时,糖利用下降而需要脂肪酸供能,此时肉碱脂酰转移酶Ⅰ活性增加,脂肪酸氧化增加。反之,饱食后脂肪合成及丙二酰CoA增加,脂肪酸的氧化分解减弱。
脂肪酸的合成是在什么中进行的
脂肪酸合成的起始原料是乙酰CoA,它主要来自糖酵解产物丙酮酸,脂肪酸的合成是在胞液中。先说说饱和脂肪酸的合成:1.乙酰辅酶A的转运:脂肪酸的合成是在胞液中,而乙酰CoA是在线粒体内,它们不能穿过线粒体内膜,需通过转运机制进入胞液。三羧酸循环中的柠檬酸可穿过线粒体膜进入胞液,然后在柠檬酸裂解酶的作用下
脂肪酸代谢概述(三)
3.软脂酸的生成 软脂酸的合成实际上是一个重复循环的过程,由1分子乙酰CoA与7分子丙二酰CoA经转移、缩合、加氢、脱水和再加氢重复过程,每一次使碳链延长两个碳,共7次重复,最终生成含十六碳的软脂酸(图5-16)。 在原核生物(如大肠杆菌中)催化此反应的酶是一个由7种不同功能的酶与一种酰基
脂肪酸的生物合成
脂肪酸的生物合成biosynthesis of fattyacids 高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的
脂肪酸的生物合成
脂肪酸的生物合成biosynthesis of fattyacids 高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的
脂肪酸的生物合成
脂肪酸的生物合成biosynthesis of fattyacids 高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的
脂肪酸的合成过程
脂肪酸的生物合成biosynthesisoffattyacids高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的软脂
丙二酰辅酶A的基本信息
丙二酰辅酶A是一种有机物,化学式为C24H37LiN7O19P3S,是一种辅酶A的衍生物。中文名丙二酰辅酶A外文名Malonyl-CoA别 名丙二酸单酰辅酶A;丙二酰辅酶A锂盐化学式C24H37LiN7O19P3S分子量859.51CAS登录号108347-84-8
脂肪酸是如何进行生物合成的
脂肪酸的生物合成高级脂肪酸的合成,以乙酰CoA为基础,通过乙酰辅酶A羧化酶的作用,在ATP的分解的同时与CO2结合,产生丙二酸单酰CoA,开始这一阶段是控速步骤,为柠檬酸所促进。丙二酸单酰CoA与乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的软脂酸(或C18的硬脂酸)医学|教育|网搜集整理,但这
关于β氧化的发现过程介绍
β氧化作用的提出是在二十世纪初,Franz Knoop 在此方面作出了关键性的贡献。他将末端甲基上连有苯环的脂肪酸喂饲狗,然后检测狗尿中的产物。结果发现,食用含偶数碳的脂肪酸的狗的尿中有苯乙酸的衍生物苯乙尿酸,而食用含奇数碳的脂肪酸的狗的尿中有苯甲酸的衍生物马尿酸。 Knoop由此推测无论脂肪酸
β氧化作用的发现过程
β氧化作用的提出是在二十世纪初,Franz Knoop 在此方面作出了关键性的贡献。他将末端甲基上连有苯环的脂肪酸喂饲狗,然后检测狗尿中的产物。结果发现,食用含偶数碳的脂肪酸的狗的尿中有苯乙酸的衍生物苯乙尿酸,而食用含奇数碳的脂肪酸的狗的尿中有苯甲酸的衍生物马尿酸。 Knoop由此推测无论脂肪酸链的