什么是核磁共振
核磁共振(MRI)又叫核磁共振成像技术,是继CT 后医学影像学的又一重大进步。自20 世纪80 年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。......阅读全文
核磁共振谱的简史
核磁共振现象于1946年由E.M.珀塞耳和F.布洛赫等人发现。目前核磁共振迅速发展成为测定有机化合物结构的有力工具。目前核磁共振与其他仪器配合,已鉴定了十几万种化合物。70年代以来,使用强磁场超导核磁共振仪,大大提高了仪器灵敏度,在生物学领域的应用迅速扩展。脉冲傅里叶变换核磁共振仪使得13C、1
核磁共振谱怎么分析
核磁共振用NMR(Nuclear Magnetic Resonance)为代号。1.原子核的自旋核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。I为零的原子
简述核磁共振现象来源
核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的运动。根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:质量数和质子数均为偶数的原子核,自旋量子数为0;质量数为奇数的原子核,自旋量子数为半整
核磁共振谱图解析
这个是个掉书袋的工作啊,难度不大,但是内容很多。至少需要掌握官能团对化学位移的影响和解耦合现象。通过化学位移解析官能团,通过耦合产生的能级裂分推断结构中各原子之间的连接关系。这个可以一门学分至少2的课。一时半会说不清啊。chemoffice可以模拟核磁谱,如果你只是为了论文作图,不妨试试看。想了解的
核磁共振的技术应用
核磁共振应用:核磁共振成像(MRI)检查已经成为一种常见的影像检查方式,核磁共振成像作为一种新型的影像检查技术,不会对人体健康有影响,但六类人群不适宜进行核磁共振检查即:安装心脏起搏器的人、有或疑有眼球内金属异物的人、动脉瘤银夹结扎术的人、体内物存留或金属假体的人、有生命危险的危重病人、幽闭恐惧症患
核磁共振谱怎么分析
之间的能量差为△E。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。目前研究得最多的是1H的核磁共振,13C的核磁共振近
核磁共振成像简介
核磁共振成像(英语:Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(英语:spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),是利用核磁共振(nuclear magnetic reso
核磁共振碳谱实验
实验方法原理2.去偶技术:为了简化核磁共振的谱图,把核与核之间直接、间接相互作用去掉所采取的技术。13C NMR 谱多采用宽带去偶(BB 去偶),也叫质子噪声全去偶。13C NMRBB 去偶可以是谱图简化,使交迭的偶合的多重峰,间并为单峰。每个峰代表一种类型的碳。同时,去偶可增强信噪比,多重峰的合并
核磁共振氢谱解析
化学环境这里指化合物中氢原子核外的电子分布情况、与该氢核邻近的其他原子和成键电子的分布情况及其对该氢核的影响。化学环境不同的氢核(也就是结构环境不同的质子),其核磁共振谱图中的化学位移不同。(1)由信号峰的组数可以推知有机物分子中含有几种类型的氢(2)由各信号峰的强度(峰面积或积分曲线高度)比可以推
核磁共振谱的应用
核磁共振技术在有机合成中,不仅可对反应物或产物进行结构解析和构型确定,在研究合成反应中的电荷分布及其定位效应、探讨反应机理等方面也有着广泛应用。核磁共振波谱能够精细地表征出各个氢核或碳核的电荷分布状况,通过研究配合物中金属离子与配体的相互作用,从微观层次上阐明配合物的性质与结构的关系,对有机合成
核磁共振的优缺点
核磁共振的优点:1、由于核磁共振是磁场成像,没有放射性,所以对人体无害,是非常安全的。据了解,世界上既没有任何关于使用核磁共振检查引起危害的报道,也没有发现患者因进行核磁共振检查引起基因突变或染色体畸变发生率增高的现象。2、核磁共振对颅脑、脊髓等疾病是最有效的影像诊断方法,不仅可以早期发现肿瘤、脑梗
如何看核磁共振谱
核磁共振(NMR,Nuclear Magnetic Resonance)是基于原子尺度的量子磁物理性质。具有奇数质子或中子的核子,具有内在的性质:核自旋,自旋角动量。核自旋产生磁矩。NMR观测原子的方法,是将样品置于外加强大的磁场下,现代的仪器通常采用低温超导磁铁。核自旋本身的磁场,在外加磁场下重新
核磁共振谱的简介
核磁共振技术是有机物结构测定的有力手段,不破坏样品,是一种无损检测技术。从连续波核磁共振波谱发展为脉冲傅立叶变换波谱,从传统一维谱到多维谱,技术不断发展,应用领域也越广泛。核磁共振技术在有机分子结构测定中扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”
低场核磁共振仪
低场核磁共振仪是一种用于能源科学技术领域的电子测量仪器,于2016年12月9日启用。 技术指标 磁体类型:永磁体;磁场强度: 0.5T±0.05 T; 磁场均匀度:≤50ppm(Ø60mm球体); 磁场稳定性:≤300Hz/Hour; 磁体温度:非线性精准恒温控制,25~35℃范围内可调,控
核磁共振的成像原理
核磁共振成像原理原子核自旋,有角动量。由于核带电荷,它们的自旋就产生磁矩。当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。精确分析证明,自旋并不完全与磁场趋向一
核磁共振法的概念
通过核磁共振光谱特性如化学迁移、耦合常数、多重性、吸收峰的宽度和强度以及温度效应,来测定样品的分子结构,特别是有机化合物的分子结构。
核磁共振谱的原理
根据量子力学原理,与电子一样,原子核也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数I决定,原子核的自旋量子数I由如下法则确定: 1)中子数和质子数均为偶数的原子核,自旋量子数为0; 2)中子数加质子数为奇数的原子核,自旋量子数为半整数(如,1/2, 3/2, 5/2); 3)
核磁共振谱的简介
核磁共振技术是有机物结构测定的有力手段,不破坏样品,是一种无损检测技术。从连续波核磁共振波谱发展为脉冲傅立叶变换波谱,从传统一维谱到多维谱,技术不断发展,应用领域也越广泛。核磁共振技术在有机分子结构测定中扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”
核磁共振成像特点
一、无损伤性检查。CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI投入临床20多年来,已证实对人体没有明确损害。孕妇可以进行MRI检查而不能进行CT检查。二、多种图像类型。CT、X线只有一种图像类型,即X线吸收率成像。而MRI常用的图像类型就有近10种,且理论上有无限多种图像类型。通过
核磁共振如何产生峰
1、 了解核磁共振的基本原理和表征核磁共振氢谱的基本参数及其解析方法。2、 掌握高分辨率核磁共振仪的操作方法,注重独立完成实验能力的培养。二、引 言核磁共振现象最早是在1946年由美国斯坦福大学的Bloch和哈佛大学的Purcell发现的,他们因此而获得了1952年度的诺贝尔奖金。具有磁矩的原子核位
核磁共振的偶合常数
自旋偶合的量度称为自旋的偶合常数(coupling constant),用符号J表示,J值的大小表示 了偶合作用的强弱J的左上方常标以数字,它表示两个偶合核之间相隔键的数目,J的右下方 则标以其它信息。就其本质来看,偶合常数是质子自旋 裂分时的两个核磁共振能之差,它可以通过共振吸收的位置差别来体现,
核磁共振波谱仪核磁共振谱仪的性能指标分析
一、分辨率分辨率系指仪器分辨相邻谱线的能力。分辨率越高,谱线越窄,能被分开的两峰间距就越小。一般选用乙醇作标准品,测试仪器分辨率。乙醇的—CHO是一组四重峰,取其高峰的半高宽作为分辨率的指标,如图一所示。一般一起的分辨率在0.1-0.4Hz。图一 乙醇的醛基四重峰二、灵敏度灵敏度又称信噪比,是衡
核磁共振碳谱图和核磁共振氢谱图有何差别
根据氢谱和碳谱,联合得出,你的样品是混合物。你的碳谱,把49ppm的峰当作溶剂峰,另外能够测得37个碳,有3个可能是羰基C=O,芳香碳可能有8个,取代碳(碳上直接连O,N等)可能有3个,饱和碳可能有16个。但氢谱,第一,对应于峰的面积不是严格成比例,第二,与饱和碳、不饱和碳的构成分子结构,不能合拍。
影响碳的核磁共振谱和质子核磁共振谱化学位移因素
化学位移是由屏蔽作用所引起的共振时磁场强度的移动现象.所以位移的大小与氢核(或碳核)所处的化学环境有关.影响氢核的位移因素有:1、电负性.与质子连接的原子电负性越大,质子信号就在越低的磁场出现2、磁各向异性效应.分子中之子与某一官能团的关系会影响质子的化学位移,可以是反磁屏蔽,可以是顺磁屏蔽,情况比
台式核磁共振波谱仪简介
核磁共振在众多领域应用越来越广泛。其中“高分辨率核磁共振谱仪”主要工作观测是 有机化学结构与核磁共振谱图相关特征信息的对应关系,是化学结构分析的重要工具。台式核磁共振采用永磁磁体,“高分辨率核磁共振谱仪”能清晰的分辨化学位移、还可 以分辨由 J-J 耦合产生的微小分裂,从中得到化学结构信息,还具
核磁共振和ct的区别
CT 主要是看实质性结构的比较多,MRI 看以脂肪等软组织结构比较清晰,一般MRI多用于脑部,而且可以配合其他技术做多功能分析,但问题是价格昂贵,有心脏起搏器等体内磁铁性物质禁忌,钙化灶,骨,肺实质显象不好,而CT比较常用,图像也比较清楚,价钱也比较便宜,配合新技术,功能也越来越强大。
核磁共振和ct的区别
CT 主要是看实质性结构的比较多,MRI 看以脂肪等软组织结构比较清晰,一般MRI多用于脑部,而且可以配合其他技术做多功能分析,但问题是价格昂贵,有心脏起搏器等体内磁铁性物质禁忌,钙化灶,骨,肺实质显象不好,而CT比较常用,图像也比较清楚,价钱也比较便宜,配合新技术,功能也越来越强大。
核磁共振法的技术特点
由于核磁共振是磁场成像,没有放射性,所以对人体无害,是非常安全的。据了解,世界上既没有任何关于使用核磁共振检查引起危害的报道,也没有发现患者因进行核磁共振检查引起基因突变或染色体畸变发生率增高的现象。虽然核磁共振在筛查早期病变有着独到之处,但任何检查都是有限度的,比如有些病人不适合核磁共振,就不要过
核磁共振设备多少钱
永磁的国产300万左右,进口的400-600万,超导1.5T的1000-1200万左右,3.0T的1500-2000万
核磁共振波谱发展契机显现
核磁共振波谱仪可以对经光源激发后产生荧光的物质或经化学处理后产生荧光的物质成分进行分析。随着技术的快速发展及相关仪器的加速研制,核磁共振波谱仪应用领域日益广泛。尤其在生物医学、环境、食品等领域市场需求明显。 核磁共振技术最初起源于医学,是临床上主要用于判断大脑、内脏等软组织是否发生病变的最