果胶的原料相关介绍

果胶存在于所有的高等植物中。 在植物细胞壁中,果胶主要与纤维素、半纤维素、木质素等共价结合,形成原果胶,它是植物的一种结构物质,对维持植物的结构和硬度起着至关重要的作用。除此之外,果胶能够调节细胞的渗透性及pH。 果胶在植物细胞壁中含量最高,在双子叶植物中,主要存在于植物细胞壁的初生细胞壁和中间片层中,占30%~35%。 目前,用于生产商品果胶的原料主要是柑橘和苹果皮渣。 此外,有大量研究从豆腐柴叶、香蕉皮、向日葵、甘薯及薜荔仔等副产物中提取果胶,不过这些原料的研究目前还仅限于实验室的基础研究中。 不同原料中果胶含量相差较大。......阅读全文

果胶的原料相关介绍

  果胶存在于所有的高等植物中。 在植物细胞壁中,果胶主要与纤维素、半纤维素、木质素等共价结合,形成原果胶,它是植物的一种结构物质,对维持植物的结构和硬度起着至关重要的作用。除此之外,果胶能够调节细胞的渗透性及pH。 果胶在植物细胞壁中含量最高,在双子叶植物中,主要存在于植物细胞壁的初生细胞壁和中间

果胶的存在形式和原料来源

果胶存在于所有的高等植物中。 在植物细胞壁中,果胶主要与纤维素、半纤维素、木质素等共价结合,形成原果胶,它是植物的一种结构物质,对维持植物的结构和硬度起着至关重要的作用。除此之外,果胶能够调节细胞的渗透性及pH。 果胶在植物细胞壁中含量最高,在双子叶植物中,主要存在于植物细胞壁的初生细胞壁和中间片层

果胶的相关内容介绍

  果胶是一类广泛存在于植物细胞壁的初生壁和细胞中间片层中的杂多糖,1824年法国药剂师Bracennot首次从胡萝卜提取得到,并将其命名为“pectin”。 果胶主要是一类以D-半乳糖醛酸(D-Galacturonic Acids,D-Gal-A)由 α-1,4-糖苷键连接组成的酸性杂多糖,除D-

果胶的流变特性相关问题介绍

  果胶的流变特性是果胶应用过程中极为重要的问题。与其它植物胶相比,果胶溶液的黏度较低。果胶稀溶液的流动特性近似牛顿型流体,而高浓度(1%)的果胶溶液具有假塑性流体的一些现象和特性。  和其他的生物高聚物分散体一样, 高浓度的果胶溶液中特性黏度和剪切速率的关系表现为 3个阶段:  (1)在 0 剪切

微生物法制备果胶的相关介绍

  有学者实验发现:将绞碎的原料浸入杀菌的水中,放入发酵罐中,接种5%的种液,30℃振荡培养,利用微生物产生的酶作用可使果胶从植物组织中游离出来。这种酶能选择性分解植物组织中的复合多糖体,从而可有效地提取出植物组织中的果胶,其作用一定时间后,过滤培养液,得到果胶提取液。对培养微生物的培养基并无特别要

果胶提取为什么对原料进行预处理

以免果胶分解。预处理的目的是钝化果胶酶以免果胶分解,使收得率降低,然后把原料进行干制,制成半成品进行保存。

果胶的性状介绍

  果胶为白色或带黄色或浅灰色、浅棕色的粗粉至细粉,几无臭,口感黏滑。溶于20倍水,形成乳白色粘稠状胶态溶液,呈弱酸性。耐热性强,几乎不溶于乙醇及其他有机溶剂。用乙醇、甘油、砂糖糖浆湿润,或与3倍以上的砂糖混合可提高溶解性。在酸性溶液中比在碱性溶液中稳定。

果胶的改性介绍

随着人们对营养健康的关注以及在果胶构效关系方面取得了一定的成绩,于是人们试图对果胶的一些结构进行人为的修饰,以得到某些具有特殊功能的果胶产品,这类果胶称为修饰果胶或改性果胶(modified pectin,MP)。果胶可通过化学、物理和生物,包括酶法来改性。 目前对于果胶的改性已取得一些成绩,这方面

果胶的凝胶特性介绍

  胶凝度是衡量果胶质量的主要指标之一,指在一定条件下,每份果胶能与多少份固形物(通常为蔗糖和葡萄糖) 制成具有一定硬度和质量的果冻的能力,即衡量果胶形成凝胶的能力大小。  胶凝度是工业上判断果胶品质好坏的一个重要参数,主要采用US-SAG 法和压力破碎法测定果胶胶凝度。 商业化果胶的胶凝度要求(U

关于果胶的用途介绍

  果胶作为一种高档的天然食品添加剂和保健品,可广泛应用于食品、医药保健品和一些化妆品中。 [2] 商业化生产果胶的原料主要是柑橘皮及苹果皮。国内果胶资源丰富,但加工利用率低,大部分原料都被直接丢弃,如能加以综合利用,将会带来巨大的经济效应。

关于果胶的结构介绍

  虽然果胶被发现近200年,但目前对于其组成和结构并没有彻底弄清楚。果胶结构非常难解析的原因在于其结构和组成随着植物的种类、储藏期和加工工艺的不同而不同。此外,果胶中还存在一些杂质。根据果胶分子主链和支链结构的不同,将其分为4类:同型半乳糖醛酸聚糖(Homogalacturonan,HG)、鼠李半

聚碳酸酯的原料的干燥的相关介绍

  1、原料烘干:普通烘干箱温度110-130,时间2-4小时,机顶料斗烘干箱温度100-120,要求水分含量低于0.03%。  2、判断水含量是否合格:看空注射的料条情况,物料通过塑化后由喷嘴流出来的料条应是均匀无色、无银丝和无气泡的细条;否则则是烘干不彻底。

果胶酶的应用介绍

果胶酶是水果加工中最重要的酶,应用果胶酶处理破碎果实,可加速果汁过滤,促进澄清等。应用其他的酶与果胶酶共同使用,其效果更加明显,如秦蓝等采用果胶酶和纤维素酶的复合酶系制取南瓜汁,大大提高了南瓜的出汁率和南瓜汁的稳定性。并通过扫描电子显微镜观察南瓜果肉细胞的超微结构,显示出单一果胶酶制剂或纤维素酶制剂

果胶酶的应用介绍

果胶酶具有专一性,可以处理白水,但是单纯的果胶酶溶液不易与体系分离,不可以回收利用,使用效率差,造成成本很高。固定化后的果胶酶不仅可以回收重复利用,还增加了稳定性,并且具有一定机械性能,使反应更易于控制。壳聚糖除了有多糖的结构外还含有氨基功能团,具有优越的功能性和生理保健的作用,并且具有良好的生物相

果胶酶的分类介绍

果胶酶包括两类,一类能催化果胶解聚,另一类能催化果胶分子中的酯水解。其中催化果胶物质解聚的酶分为作用于果胶的酶(聚甲基半乳糖、醛酸酶、醛酸裂解酶或者果胶裂解酶)和作用于果胶酸的酶(聚半乳糖醛酸酶、聚半乳糖醛酸裂解酶或者果胶酸裂解酶)。催化果胶分子中酯水解的酶有果胶酯酶和果胶酰基水解酶。

果胶酶的特性介绍

【PH值特性】最适作用PH:3.0【温度特性】最适作用温度为 50℃。【作用原理】果胶酶是从根霉中提取的,使细胞间的果胶质降解,把细胞从组织内分离出来。

关于果胶改性的方法介绍

  随着人们对营养健康的关注以及在果胶构效关系方面取得了一定的成绩,于是人们试图对果胶的一些结构进行人为的修饰,以得到某些具有特殊功能的果胶产品,这类果胶称为修饰果胶或改性果胶(modified pectin,MP)。果胶可通过化学、物理和生物,包括酶法来改性。 目前对于果胶的改性已取得一些成绩,这

果胶的溶解性介绍

  根据果胶的溶解性将其分为水溶性果胶和水不溶性果胶。 果胶的溶解性与果胶的聚合度和其甲氧基的含量和分布有关。 虽然果胶溶液的pH、温度以及浓度对果胶的溶解性也有一定的影响,但一般来说,果胶的相对分子质量越小,酯化度越高,其溶解性越好。类似于亲水胶体,果胶颗粒是先溶胀再溶解。如果果胶颗粒分散于水中时

关于果胶的盐析法的介绍

  多价金属盐沉淀法,目前在生产上广泛采用。具体方法是:在果胶液中加入一定量的MgCl2、CuCl2或AlCl3然后用氨等调节pH,使之形成碱式金属盐,此碱式金属盐与果胶形成络合物沉淀出来,然后再经过脱盐漂洗和干燥得到果胶成品。具体流程是:橘皮残渣-复水-灭酶-漂洗-沥干-加酸萃取-过滤-加盐沉析-

关于果胶的酯化度的介绍

  果胶是一类聚半乳糖醛酸多糖, 其半乳糖醛酸残基往往被一些基团酯化,如甲氧基、酰胺基等。酯化度又称甲氧基化,指果胶中甲酯化、乙酰化和酰胺化比例的总和。 根据果胶酯化度以及酯化种类的差异,可将果胶分为3类:高酯果胶(DE>50%)、低酯果胶(DE25%)。果胶的酯化度通常因原料的多样性和提取工艺的不

果胶酶的应用范围介绍

  果胶酶是水果加工中最重要的酶,应用果胶酶处理破碎果实,可加速果汁过滤,促进澄清等。应用其他的酶与果胶酶共同使用,其效果更加明显,如秦蓝等采用果胶酶和纤维素酶的复合酶系制取南瓜汁,大大提高了南瓜的出汁率和南瓜汁的稳定性。并通过扫描电子显微镜观察南瓜果肉细胞的超微结构,显示出单一果胶酶制剂或纤维素酶

关于果胶的基本内容介绍

  果胶是一种多糖,其组成有同质多糖和杂多糖两种类型。它们多存在于植物细胞壁和细胞内层,大量存在于柑橘、柠檬、柚子等果皮中。呈白色至黄色粉状,相对分子质量约20000~400000,无味。在酸性溶液中较在碱性溶液中稳定,通常按其酯化度分为高酯果胶及低酯果胶。高酯果胶在可溶性糖含量≥60%、pH=2.

果胶的酶解法制备介绍

  由于果胶分子与钙镁及铁离子结合、纤维素和半纤维素等细胞壁多糖与果胶分子形成共价键、果胶分子中的羟基与细胞壁的组分形成离子键、果胶分子彼此间与其他成分间的物理缠绕等等,而使果胶以原果胶的形式存在,用酶适当处理后,由于细胞壁降解,可提高果胶得率、简化工艺。  酶法提取果胶基本分两个阶段,如果用酸法提

关于果胶酶的分类介绍

  果胶酶包括两类,一类能催化果胶解聚,另一类能催化果胶分子中的酯水解。其中催化果胶物质解聚的酶分为作用于果胶的酶(聚甲基半乳糖、醛酸酶、醛酸裂解酶或者果胶裂解酶)和作用于果胶酸的酶(聚半乳糖醛酸酶、聚半乳糖醛酸裂解酶或者果胶酸裂解酶)。催化果胶分子中酯水解的酶有果胶酯酶和果胶酰基水解酶。

关于果胶的基本信息介绍

  果胶是一种多糖,其组成有同质多糖和杂多糖两种类型。它们多存在于植物细胞壁和细胞内层,大量存在于柑橘、柠檬、柚子等果皮中。呈白色至黄色粉状,相对分子质量约20000~400000,无味。在酸性溶液中较在碱性溶液中稳定,通常按其酯化度分为高酯果胶及低酯果胶。高酯果胶在可溶性糖含量≥60%、pH=2.

果胶用途的发展前景介绍

  在欧美国家,果胶的主要用途为水果加工品的胶凝和增稠,如饮料,果酱,沙拉酱等;而日本及其它国家则更多的作为酸性乳饮料的蛋白质稳定剂。 果胶主要生产国有丹麦、英国、美国、以色列、法国等,亚洲国家产量极少,特别是消费量约占世界产量10%的日本因无生产厂家,完全依靠进口。在我国由于进口果胶价格远高于国产

盐析法提取果胶的方法介绍

多价金属盐沉淀法,目前在生产上广泛采用。具体方法是:在果胶液中加入一定量的MgCl2、CuCl2或AlCl3然后用氨等调节pH,使之形成碱式金属盐,此碱式金属盐与果胶形成络合物沉淀出来,然后再经过脱盐漂洗和干燥得到果胶成品。具体流程是:橘皮残渣-复水-灭酶-漂洗-沥干-加酸萃取-过滤-加盐沉析-抽滤

果胶酶的贮存条件介绍

本品最佳贮藏条件为4-15℃,一般为室温贮藏,避免阳光直射。果胶酶本质上是聚半乳糖醛酸水解酶,果胶酶水解果胶主要生成β-半乳糖醛酸,可用次碘酸钠法进行半乳醛酸的定量,从而测定果胶酶活力。

关于果胶酶的应用介绍

  果胶酶是水果加工中最重要的酶,应用果胶酶处理破碎果实,可加速果汁过滤,促进澄清等。应用其他的酶与果胶酶共同使用,其效果更加明显,如秦蓝等采用果胶酶和纤维素酶的复合酶系制取南瓜汁,大大提高了南瓜的出汁率和南瓜汁的稳定性。并通过扫描电子显微镜观察南瓜果肉细胞的超微结构,显示出单一果胶酶制剂或纤维素酶

果胶的相对分子质量介绍

  果胶的相对分子质量介于50~300ku之间,不同原料和工艺提取到的果胶的相对分子质量相差甚大。 凝胶法和高效体积排阻色谱法(High Performance Size Exclusion Chromatography,HPSEC)是测定果胶相对分子质量的主要方法。HPSEC测定较为准确,且结果信