Antpedia LOGO WIKI资讯

能斯特方程的方程应用

一、离子浓度改变时电极电势的变化根据能斯特方程可以求出离子浓度改变时电极电势变化的数值二、离子浓度改变对氧化还原反应方向的影响非标准状态下对于两个电势比较接近的电对,仅用标准电势来判断反应方向是不够的,应该考虑离子浓度改变对反应方向的影响。三、介质酸度对氧化还原反应的影响及pH电势图......阅读全文

能斯特方程的方程应用

一、离子浓度改变时电极电势的变化根据能斯特方程可以求出离子浓度改变时电极电势变化的数值二、离子浓度改变对氧化还原反应方向的影响非标准状态下对于两个电势比较接近的电对,仅用标准电势来判断反应方向是不够的,应该考虑离子浓度改变对反应方向的影响。三、介质酸度对氧化还原反应的影响及pH电势图

能斯特方程的方程用途

化学反应实际上经常在非标准状态下进行,而且反应过程中离子浓度也会改变。例如,实验室氯气的制备方法之一,是用二氧化锰与浓盐酸反应;在加热的情况下,氯气可以不断发生。但是利用标准电极电势来判断上述反应的方向,却会得出相反的结论。MnO2+4HCl=MnCl2+Cl2+2H2O还原剂的电极反应:2Cl--

能斯特方程的方程内容

通过热力学理论的推导,可以找到上述实验结果所呈现出的离子浓度比与电极电势的定量关系。对下列氧化还原反应:E=E(标准)-(RT)/(nF)ln([Zn2+]/[Cu2+])对于任一电池反应:aA+bB=cC+dDE=E(标准)-(RT)/(nF)ln(([C]c·[D]d)/([A]a·[B]b))

什么是能斯特方程

化学反应实际上经常在非标准状态下进行,而且反应过程中离子浓度也会改变。例如,实验室氯气的制备方法之一,是用二氧化锰与浓盐酸反应;在加热的情况下,氯气可以不断发生。但是利用标准电极电势来判断上述反应的方向,却会得出相反的结论。能斯特方程中的参数MnO2+4HCl=MnCl2+Cl2+2H2O  还原剂

能斯特方程是什么

能斯特方程电对的标准电极电势是在298K下,反应物的浓度为1mol·L-1(反应物为气态时,其分压为101kPa)时测得的,如果反应物的浓度和温度发生改变,则电对的电极电势也随着发生变化,它们之间的关系可以用能斯特方程表示.假定反应为:氧化型+ne还原型式中E——某一定浓度下的电极电势;E——标准电

​什么是能斯特方程?

能斯特方程,是指用以定量描述某种离子在A、B两体系间形成的扩散电位的方程表达式。在电化学中,能斯特方程用来计算电极上相对于标准电势而言的指定氧化还原对的平衡电压。能斯特方程只有在氧化还原对中两种物质同时存在时才有意义。这一方程把化学能和原电池电极电位联系起来,在电化学方面有重大贡献,故以其发现者德国

计算的电化学电池的电压电化学能斯特方程计算。

能斯特方程是用于计算的电化学电池的电压或找到的浓度的细胞的组件之一。这里看看能斯特方程和如何将它应用到解决问题的一个例子。 能斯特方程Ë 电池 = E 0 细胞 - (RT / NF)LNQË 细胞 =非标准条件下的电池电势(V)ê 0 细胞 =标准条件下的细胞的潜力R =气体常数,为8.31(伏库

范第姆特方程解析

范第姆特方程范第姆特方程(Van Deemter equation)是对塔板理论的修正,用于解释色谱峰扩张和柱效降低的原因。塔板理论从热力学出发,引入了一些并不符合实际情况的假设,Van Deemter方程则建立了一套经验方程来修正塔板理论的误差。范第姆特方程将峰形的改变归结为理论塔板高度的变化,理

范德瓦耳斯方程的具体应用

在流体力学中,范氏方程可以作为可压缩流体(如液态高分子材料)的PVT状态方程。这种情况下,由于比容V变化不大,可将方程简化为:(p+A)(V-b)=CT,其中p为压强,V为比容,T为温度,A、B、C均为与对象相关的参数 。

理想气体方程的应用

计算气体所含物质的量从数学上说,当一个方程中只含有1个未知量时,就可以计算出这个未知量。因此,在压强、体积、温度和所含物质的量这4个量中,只要知道其中的3个量即可算出第四个量。这个方程根据需要计算的目标不同,可以转换为下面4个等效的公式:求压强: p=nRT/v求体积: v=nRT/p求所含物质的量