休克尔规则的缺点

判别环状共轭体系芳香性的休克尔规则一般适用于单环共轭烃。对于多环共轭体系,有的适用有的不适用。例如芘(1)、蔻(2)和偶苯(3),它们的 π电子数分别为16、24和12,都不符合休克尔规则,但它们都是芳香性的。而丁搭烯(4)、二环[6,2,0]癸五烯(5)和辛搭烯(6),它们的π电子数分别为6、10、14,在不考虑分子的非平面性时,它们都符合休克尔规则,似乎应该是芳香性的。但是(4)、(5)、(6)却不是芳香烃。休克尔规则不适用于许多含三个以上环的稠环芳烃体系。例如,芘含有16个离域电子(8个键),蒄含有24个离域电子(12个键)。尽管这些稠环化合物不符合4n+2规则,但它们都具有芳香性。事实上,休克尔规则只能在单环体系下被理论证明。......阅读全文

休克尔规则的缺点

判别环状共轭体系芳香性的休克尔规则一般适用于单环共轭烃。对于多环共轭体系,有的适用有的不适用。例如芘(1)、蔻(2)和偶苯(3),它们的 π电子数分别为16、24和12,都不符合休克尔规则,但它们都是芳香性的。而丁搭烯(4)、二环[6,2,0]癸五烯(5)和辛搭烯(6),它们的π电子数分别为6、10

休克尔规则的的规则作用

1.特点分子的分析从休克尔规则我们可以得知,具有芳香性的通常是具有如下四个特点的分子:(1)它们是包括若干数目π键的环状体系(π电子总数必须等于4n+2,其中n为自然整数(注意n不是指环碳原子数));(2)它们具有平面结构,或至少非常接近平面(平面扭转不大于0.1nm);(3)环上的每一个原子必须是

休克尔规则的的简介

休克尔规则表明,对完全共轭的、单环的、平面多烯来说,具有(4n+2)个 π电子(这里n是大于或等于零的整数)的分子,可能具有特殊芳香稳定性。随着磁共振实验方法的出现,对决定一化合物是否具有芳香性起了重要的作用,并对芳香性的本质有了进一步的了解。因此芳香性更广泛的含义为:分子必须是共平面的封闭共轭体系

关于休克尔规则的简介

  休克尔规则表明,对完全共轭的、单环的、平面多烯来说,具有(4n+2)个 π电子(这里n是大于或等于零的整数)的分子,可能具有特殊芳香稳定性。  随着磁共振实验方法的出现,对决定一化合物是否具有芳香性起了重要的作用,并对芳香性的本质有了进一步的了解。因此芳香性更广泛的含义为:分子必须是共平面的封闭

休克尔规则的原理简介

  为什么4n+2个π电子平面单环共轭体系才具有芳香性呢?从分子轨道能级计算发现,当平面单环体系中的成键轨道数目为2 n+1时,如果有4n+2个π电子刚好能给满成键轨道,从而具有类似惰性气体的电子排布,而将具有最大的成键能而变得稳定,平面或接近平面, 电子的离域才有效;当环上的原子存在空间的排斥作用

关于休克尔规则的作用介绍

  1.特点分子的分析  从休克尔规则我们可以得知,具有芳香性的通常是具有如下四个特点的分子:  (1)它们是包括若干数目π键的环状体系(π电子总数必须等于4n+2,其中n为自然整数(注意n不是指环碳原子数));  (2)它们具有平面结构,或至少非常接近平面(平面扭转不大于0.1nm);  (3)环

休克尔规则的原理及证明

具有芳香性原因为什么4n+2个π电子平面单环共轭体系才具有芳香性呢?从分子轨道能级计算发现,当平面单环体系中的成键轨道数目为2 n+1时,如果有4n+2个π电子刚好能给满成键轨道,从而具有类似惰性气体的电子排布,而将具有最大的成键能而变得稳定,平面或接近平面, 电子的离域才有效;当环上的原子存在空间

休克尔规则的基本概念

Hückel规则(休克尔规则)是有机化学的经验规则,它指以sp2杂化的原子如果形成单环平面共轭体系,且其π电子数符合4n+2时(其中n为0或者正整数),具有相应的电子稳定性,由此形成的化合物具有芳香性  。从凯库勒(Kekule)提出苯的环状结构,并发现苯和类苯化合物有特殊性质(芳香性)以来,人们对

简述休克尔规则的同芳香型

  此外,还有同芳香性,它是指某些共轭双键的环被一个或两个亚甲基所隔开,这个亚甲基在环平面之外,是环上的π电子构成芳香体系。如环壬三烯正离子有两个亚甲基在环平面之外环平面的碳行成共轭体系,π电子数为6,符合尔4n+2规则,它有芳香性。

关于休克尔规则的证明相关介绍

  休克尔4n+2规则可用微扰分子轨道理论即PMO法从理论上加以证明。  在休克尔规则的启示下,近二十年合成了芳香体系的化合物,于是出现了一系列非苯芳烃,及一些不含苯环结构,但具有一定程度的芳香性的烃,称为非苯芳烃。  1. 环丁烯基二价正离子 它环上的四个碳都是sp杂化的,π电子数等于2,符合休克

关于休克尔规则的基本信息介绍

  Hückel规则(休克尔规则)是有机化学的经验规则,它指以sp2杂化的原子如果形成单环平面共轭体系,且其π电子数符合4n+2时(其中n为0或者正整数),具有相应的电子稳定性,由此形成的化合物具有芳香性 [4] 。  从凯库勒(Kekule)提出苯的环状结构,并发现苯和类苯化合物有特殊性质(芳香性

关于休克尔规则的不足之处分析介绍

  判别环状共轭体系芳香性的休克尔规则一般适用于单环共轭烃。对于多环共轭体系,有的适用有的不适用。例如芘(1)、蔻(2)和偶苯(3),它们的 π电子数分别为16、24和12,都不符合休克尔规则,但它们都是芳香性的。而丁搭烯(4)、二环[6,2,0]癸五烯(5)和辛搭烯(6),它们的π电子数分别为6、

容量法卡尔费休水份测定仪的优缺点

  优点:  1、准确反应终点的判断,可以精确检测各种液体、固体和一些气体样品中的水分含量;  2、只要保证滴定池中有合适的水份总量,均能快速而且精确测量样品中的水份;  3、水份测定的时间比加热法快速水份测定仪更短,平均从几十秒到几分钟;  4、对于一些难溶性、不溶性物质,以及具有其它挥发性物质不

波克尔斯效应和克尔效应的区别

波克尔斯效应和克尔效应的区别在于:波克尔斯效应是与电场大小成正比,而克尔效应则是与电场大小的平方成比例的。

波克尔斯效应和克尔效应的区别

波克尔斯效应和克尔效应的区别在于:波克尔斯效应是与电场大小成正比,而克尔效应则是与电场大小的平方成比例的。

波克尔斯效应和克尔效应的区别

波克尔斯效应和克尔效应的区别在于:波克尔斯效应是与电场大小成正比,而克尔效应则是与电场大小的平方成比例的。

库仑法卡尔费休水份测定仪的优缺点简介

  优点:  1)库仑法卡尔费休水份测定仪通过计算阳极电解碘产生的电量来检测水份含量,在仪器质量可靠的情况下,可以非常精确的测定水份含量,  2)在检测微量水份时,电解速度能满足要求,往往十几秒到几十秒就能检测一个样品,检测效率极高;  3)库仑法卡尔费休水份测定仪相比容量法卡尔费休水份测定仪来说,

克尔效应的概念

指与电场二次方成正比的电感应双折射现象。放在电场中的物质,由于其分子受到电力的作用而发生取向(偏转),呈现各向异性,结果产生双折射,即沿两个不同方向物质对光的折射能力有所不同。 这一现象是1875年J.克尔发现的。后人称它为克尔电光效应,简称克尔效应。

克尔效应的定义

指与电场二次方成正比的电感应双折射现象。放在电场中的物质,由于其分子受到电力的作用而发生取向(偏转),呈现各向异性,结果产生双折射,即沿两个不同方向物质对光的折射能力有所不同。 这一现象是1875年J.克尔发现的。后人称它为克尔电光效应,简称克尔效应。

克尔效应简介

在外电场作用下,液体就成为光学上的单轴晶体,其光轴同电场方向平行。通常的作法是:把液体装在玻璃容器中,外加电场通过平行板电极作用在液体上,光垂直于电场方向通过玻璃容器,以观察克尔电光效应。这种装置称为克尔盒。这时两个主要折射率n0与ne,分别称为正常与反常折射率。容器中的液体称为正或负双折射物质,取

克尔效应介绍

也称为二次电光(QEO)效应的克尔效应是材料响应于所施加的电场的折射率的变化。 克尔效应与普克尔效应不同,因为诱导的指数变化与电场的平方成正比,而不是线性变化。 所有材料显示克尔效应,但某些液体比其他液体显示更强烈。 克尔效应于1875年被苏格兰物理学家约翰·克尔(John Kerr)发现。通常考虑

克尔效应的理论介绍

克尔电光效应对于非线性材料,电动极化场p只会取决于电场:其中ε0是真空介电常数, 是电极化率的n阶的组成部分。“:”符号代表了矩阵之间的内积。我们可以更明确的描述这种关系,第i次组成的向量P可以表示为:式中,i=1,2,3。通常假设 ,即部分平行为x的极化场; 等等。材料表现出不可忽视的克尔电光效应

克尔效应的概念简介

在外电场作用下,液体就成为光学上的单轴晶体,其光轴同电场方向平行。通常的作法是:把液体装在玻璃容器中,外加电场通过平行板电极作用在液体上,光垂直于电场方向通过玻璃容器,以观察克尔电光效应。这种装置称为克尔盒。这时两个主要折射率n0与ne,分别称为正常与反常折射率。容器中的液体称为正或负双折射物质,取

光学克尔效应简介

光学克尔效应,或AC克尔效应是指其电场由光本身所产生的情况。这导致变异的折射率与辐射光本身的辐照度成正比。这种折射率的变化导致了的非线性光学效应的自聚焦、自相位调制以及调制不稳定性,并且是克尔透镜锁模的基础。此效应仅在非常强烈的光束下才能较明显的表现出来,比如激光。

克尔磁光效应简介

克尔磁光效应线偏振光入射到磁化媒质表面反射出去时,偏振面发生旋转的现象。也叫克尔磁光效应或克尔磁光旋转。这是继法拉第效应发现后,英国科学家J.克尔于1876年发现的第二个重要的磁光效应。按磁化强度和入射面的相对取向,克尔磁光效应包括三种情况:极向克尔效应, 即磁化强度 M 与介质表面垂直时的克尔效应

克尔效应理论介绍

克尔电光效应对于非线性材料,电动极化场p只会取决于电场:其中ε0是真空介电常数, 是电极化率的n阶的组成部分。“:”符号代表了矩阵之间的内积。我们可以更明确的描述这种关系,第i次组成的向量P可以表示为:式中,i=1,2,3。通常假设 ,即部分平行为x的极化场; 等等。材料表现出不可忽视的克尔电光效应

什么是克尔效应?

指与电场二次方成正比的电感应双折射现象。放在电场中的物质,由于其分子受到电力的作用而发生取向(偏转),呈现各向异性,结果产生双折射,即沿两个不同方向物质对光的折射能力有所不同。 这一现象是1875年J.克尔发现的。后人称它为克尔电光效应,简称克尔效应。

泡克尔斯效应的定义

泡克尔斯效应(英语:Pockels effect)是指光介质在恒定或交变电场下产生光的双折射效应,这是一种线性电--光效应,其折射率的改变和所加电场的大小成正比 。

克尔效应实验的实验原理

各向同性的介质如玻璃,石蜡,水,硝基苯等,在强电场作用下会表现出各向异性的光学性质,表现出双折射现象。折射率差与电场强度的平方成正比,称为克尔效应。在两平行平板之间加上高电压,在电场作用下,由于分子的规律排列,这些介质就表现出象单轴晶体那样的光学性质,光轴的方向就与电场的方向对应。当线偏振光沿着与电

克尔效应实验的实验原理

各向同性的介质如玻璃,石蜡,水,硝基苯等,在强电场作用下会表现出各向异性的光学性质,表现出双折射现象。折射率差与电场强度的平方成正比,称为克尔效应。在两平行平板之间加上高电压,在电场作用下,由于分子的规律排列,这些介质就表现出象单轴晶体那样的光学性质,光轴的方向就与电场的方向对应。当线偏振光沿着与电